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Percolation in ionic fluids and formation of a fractal structure

Tetsuo Kaneko*
Kurakenchikuzokeisha Company, Ltd., Shimo 1-27-22, Kita-ku, Tokyo 115-0042, Japan

~Received 14 May 1999!

The size of a dense region in the nonuniform distribution of particles generated in an ionic fluid can develop
under certain conditions, as the charge on each particle increases. To derive this result, it is assumed that such
a dense region is an ensemble of particles linked to each other as particle pairs that satisfy the conditionEi j

1ui j (r )<0, whereEi j is the relative kinetic energy fori andj particles andui j (r ) the Coulomb potential. The
percolation of the ensemble can be estimated analytically. The result described above has been derived from
this estimation. According to the pair connectedness function derived for analytic estimation of the percolation,
the dense region resulting from the contribution of the Coulomb attractive force between positive and negative
particles can produce a fractal structure with a fractal dimension of 1.5. Furthermore, a configuration of
charged particles, which can be approximately drawn from a characteristic of the pair connectedness function,
agrees with that of the Bjerrum theory.@S1063-651X~99!11012-2#

PACS number~s!: 61.43.Hv, 64.60.Ak, 61.20.Qg, 82.70.Dd
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I. INTRODUCTION

The distribution of charged particles in an ionic flu
tends toward a nonuniform state, even if the densities
charged particles are low. Dense areas generated in the
tribution can significantly contribute to the thermodynam
of the ionic fluid. Models describing the contribution of th
dense areas have been proposed@1–3#. The present interes
is focused on estimating the mean size of the dense are

The tendency mentioned above can be attributed to
characteristic of the Coulomb force. A force acting betwe
positive and negative charged particles is characterized
long-range attractive force. The attractive force can cont
ute to the formation of dense regions even in the fluid of l
densities.

Each dense region can be an ensemble composed of
ticles bound to each other by the attractive force. The do
nant portion of particles distributed in a dense region can
occupied by particles constituting pairs linked by the attr
tive force. Particles constituting each pair should then sat
the conditionEi j 1ui j (r )<0. Here,Ei j andui j (r ) for a pair
of i and j particles are the relative kinetic energy and p
potential, respectively.

In the present work, a bond between thei andj particles is
defined as a state satisfying the conditionEi j 1ui j (r )<0 @4#.
An ensemble of particles linked by such bonds is a phys
cluster in the present work. The dense area is regarded a
physical cluster of particles linked by bonds described
the conditionEi j 1ui j (r )<0.

For a discussion of the critical thermodynamics of
ionic fluid, the Bjerrum theory@1# can result in a satisfactor
description@3#. However, it has been indicated that an ion
cluster model, beyond the ion pair model based on the B
rum theory, should be considered for estimating precisely
thermodynamics of ionic fluids@3#. Also, the thermodynamic
necessity for including clustering has been explicity dem
strated@5#.

*Electronic address: kanekous@ppp.bekkoame.ne.jp
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Recently, a mathematical treatment for estimating
mean size of ionic clusters was presented for an ionic fl
composed of charged particles having the same size@6#. As a
result, a numerical calculation is available for evaluating
mean cluster size.

In the present work, the mean size of the dense area
estimated as that of the physical clusters described ab
The percolation concerning the dense regions is regarde
that concerning the physical clusters. The percolation is a
lytically estimated, using an integral equation with a closu
scheme.

To derive an analytical solution for the integral equatio
a practical expression for closure is required. The expres
will be obtained by estimating the behavior of the correlati
functions at a great distance. The expression for a tw
component mixture will be given in Sec. III D. An analytica
solution for the integral equation will be presented in S
IV. Requirements for the percolation threshold will be d
rived in Sec. V B. The percolation thresholds estimated
two ionic fluids will be given in Sec. VI.

Besides the thermodynamics of ionic fluid describ
above, the percolation resulting from the contact of de
areas can affect other phenomena. The electrical trans
phenomenon can be one of such phenomena.

In an ionic fluid, a group of charged particles which c
freely migrate for the external electric field is distinguish
from another group of charged particles which cannot fre
migrate. If each charged particle constituting a pair satis
the conditionEi j 1ui j (r )<0, the charged particles canno
freely migrate away from each other.

If the external electric field applied to the ionic fluid
weak, charged particles of the dense area can hardly con
ute to the electrical transport phenomenon induced by
external electric field. The dense area can then be polar
only by the external electric field. A free charged partic
which at least is not part of the dense areas, can significa
contribute to the electrical transport. As the densities of p
ticles increase under the electrical neutrality condition,
number of dense areas should increase. Free charged
ticles contributing to the electrical transport should then
6742 © 1999 The American Physical Society
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crease. Thus, the electrical conductivity of an ionic fluid, d
to the transport of charged particles, can decrease as the
sities of charged particles increase.

On the other hand, it is possible that the electrical c
ductivity of an ionic fluid can increase as the densities
charged particles increase, if the densities of the char
particles are high.

If the densities are high, a sufficiently developed den
region can be generated since some portions of the d
regions are in contact with each other. If a percolated de
region is generated, the percolated dense region can con
ute to the electrical transport as a path for the electric curr
The electrical transport via the percolated dense regio
effective, since the contribution to the electric current can
generated by only a small shifft of each charged particle
to the external electric field. An increase in the densities
charged particles can increase the size of each dense re
Thus, an increase in density can enhance electrical con
tivity.

Ultimately, as the densities increase from a sufficien
low level, the electrical conductivity of the ionic fluid ca
decrease, and reach a minimum. For additional increase
density, the electrical conductivity can increase due to
contribution of percolated dense regions to the electr
transport.

In addition, the behavior similar to that of the electric
conductivity described above has been found in a phen
enon demonstrated experimentally@7#.

Hydrodynamical transport phenomena should also be
fluenced by percolation concerning the physical clusters
scribed above. A viscosity anomaly was detected near
critical consolute point of an ionic ethylammonium nitrat
n-octanol mixture@8#. It is considered that such percolatio
can contribute to the viscosity anomaly.

The growth of a dense region can result from the con
of small dense areas. This growth process is found to
similar to the growth process known as cluster-cluster ag
gation @9#. The distribution of particles resulting from
cluster-cluster aggregation resulted in the fractal struct
while the fractal dimensiondf of the fractal structure was
determined asdf;1.75 @9#.

In a suspension of charged colloidal particles also, it
been demonstrated that the generated nonuniform distr
tion of colloidal particles can provide a fractal structure. T
fractal dimension of the structure was 1.9@10#.

If the contribution of cluster-cluster aggregation to t
growth process of dense areas is considered, it can be
dicted that a developed dense region has at least a fr
structure. Moreover, the fractal dimension of the frac
structure should be close to 1.75. The pair connected
estimated in the present work will demonstrate that a clu
provides a fractal structure having a fractal dimension cl
to 1.75. This will be revealed in Sec. VII.

II. PAIR CONNECTEDNESS

In the present work, a bound state for thei and j particles
is defined as the state satisfying the conditionEi j 1ui j (r )
<0 having a pair potentialui j (r ) and relative kinetic energy
Ei j .

When the expression of the pair correlation functi
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gi j (r ) is given using the grand partition function, a boun
state Ei j 1ui j (r )<0 can be distingished in its expressio
from an unbound stateEi j 1ui j (r ).0. The pairwise bond
probability pi j (r ) can then play a role. The facto
exp(2buij) in the expression can be expessed as the sum
the contributions to the bound state and the unbound stat
pi j (r ) is used. Thus, the sum is

e2bui j 5pi j ~r !e2bui j 1@12pi j ~r !#e2bui j , ~2.1!

whereb is defined asb[1/kT. Here,k is Boltzmann’s con-
stant, andT the temperature. The pairwise bond probabil
pi j (r ) introduced in Eq.~2.1! is given as

pi j ~r !52p21/2E
0

2bui j
y1/2e2ydy, ~2.2!

where y5@bEi j #
1/2 @4#. This function represents the prob

ability that a pair ofi and j particles satisfies the conditio
Ei j 1ui j (r )<0. If bui j .0, the probability should be
pi j (r )50. In addition, pair potentials satisfying the relatio
bui j .0 for an ionic fluid are the repulsive Coulomb pote
tial and the hard core potential.

Ultimately, Eq. ~2.1! signifies that the Mayerf function
f i j 5e2bui j 21 is the sum of a factorf i j

1 contributing to the
bound state, and another factorf i j* not contributing to the
bound state. According to Eq.~2.1!, f i j

1 and f i j* are given as

f i j
1[pi j ~r !e2bui j

and

f i j* [@12pi j ~r !#e2bui j 21.

The pair connectednessPi j (r ) is useful for estimating the
cluster size @11#, and is defined as the probabilit
r ir j Pi j (r )dr idr j that both thei particle in a volume elemen
dr i and thej particle in a volume elementdr j belong to the
same physical cluster. In the above,r i andr j are the densi-
ties of thei andj particles for a uniform distribution, respec
tively. If the probability that thei particle in dr i and thej
particle indr j do not belong to the same cluster is express
asr ir jDi j (r )dr idr j , Pi j (r ) can be related to the pair corre
lation functiongi j (r ) as

gi j 5Pi j 1Di j . ~2.3!

Here, the physical meanings ofPi j and ofDi j require that

lim
r→`

Pi j 50 and lim
r→`

Di j 51,

since lim
r→`

gi j 51. In addition, if a cluster has a fracta

structure, then Pi j (r ), according to the feature o
r ir j Pi j (r )dr idr j , provides the characteristics of the fract
structure.

Mayer’s mathematical clusters~diagrams defined in term
of f bonds! constitutinggi j can be expressed as mathemati
clusters consisting off i j

1 and f i j* , since the sumf i j
11 f i j* is

equal to the Mayerf function f i j .
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6744 PRE 60TETSUO KANEKO
A physical cluster consisting of particles bound to ea
other under the conditionEi j 1ui j (r )<0, can be extracted
from the mathematical clusters as a mathematical cluste
cluding the product off i j

1 .
If each f i j

1 is defined in terms of anf 1 bond, thef 1 bond
corresponds to the pair of particles satisfying the condit
Ei j 1ui j (r )<0. Particles jointed byf 1 bonds form a physi-
cal cluster. If the physical cluster includesi and j particles,
the physical cluster consists of the particles contributing t
diagram having at least one path of all thef 1 bonds between
the root pointsi and j, at which thei and j particles are
located. Hence, such diagrams are those that contribut
Pi j .

The collection of diagrams contributing toPi j can be
separated into the sum of two parts, namelyCi j

1 and Ni j
1 .

Here, the partCi j
1 is the contribution of non-nodal diagram

having at least one path of allf 1 bonds betweeni andj. The
partNi j

1 represents the contribution of nodal diagrams hav
at least one path of allf 1 bonds betweeni andj. Hence,Ni j

1

can be determined by the convolution integral of the prod
of Ci j

1 and Pi j . Thus, Pi j can be expressed by an integr
equation@11# having the same mathematical structure as
Ornstein-Zernike equation, namely

Pi j 5Ci j
11 (

k51

m

rkE Cik
1Pk jdr k , ~2.4!

wherem is the number of species.

III. CLOSURE SCHEME FOR SIMPLIFYING
THE MATHEMATICAL TREATMENT

A. Simple closure scheme for the integral equation

A closure scheme for Eq.~2.4! must be obtained to esti
matePi j .

Using the contributionNi j of the nodal diagrams forf
bonds, the pair-correlation functiongi j

PY due to the Percus
Yevick ~PY! approximation can be expressed asgi j

PYebui j

511Ni j . If the relation e2bui j 5 f i j
11 f i j* 11 is used, the

above approximation becomes

gi j
PY5 f i j

1~11Ni j
11Ni j* !1~ f i j* 11!Ni j

11~ f i j* 11!~11Ni j* !,

whereNi j is the sum ofNi j
1 and a remainderNi j* ~i.e., Ni j* is

all nodal diagrams which do not include paths of allf 1

bonds betweeni and j ). The terms in the above equation ca
be separated into those constitutingPi j and those constitut
ing Di j , by considering the formgi j 5Pi j 1Di j . If the rela-
tion Pi j 5Ci j

11Ni j
1 is considered, the expressions corr

sponding to Pi j and Di j can be determined from th
separated terms as

Pi j 5 f i j
1gi j

PYebui j 1~ f i j* 11!~Pi j 2Ci j
1! ~3.1a!

and

Di j 5~ f i j* 11!gi j
PYebui j 2~ f i j* 11!~Pi j 2Ci j

1!. ~3.1b!

By considering f i j
15pi j (r )e2bui j , e2bui j 5 f i j

11 f i j* 11,
and the PY approximationgi j

PY(12ebui j )5ci j
PY, Eqs.~3.1a!

and ~3.1b! can be rewritten as
h

n-

n

a

to

g

t

e

-

Pi j 1
@12pi j ~r !#e2bui j

12@12pi j ~r !#e2bui j
Ci j

1

5
pi j ~r !ci j

PY

~12ebui j !$12@12pi j ~r !#e2bui j %
~3.2a!

and

Di j 52Pi j 1
ci j

PY

12ebui j
. ~3.2b!

Equation~3.2a! can be used as closure for Eq.~2.4!, if ci j
PY is

given. Equations~3.2a! and~3.2b! are applicable when eithe
bui j ,0 or bui j .0, respectively.

In addition, Eq. ~3.2a! shows that the symmetryCi j
1

5Cji
1 is maintained due to the symmetryPi j 5Pji .

B. Behavior of Cij
1 for 1 !r

1. Behavior of Cij
1 for buij < 0 and 1!r

The closure scheme given by Eq.~3.2a! is not a practical
way to solve Eq.~2.4! analytically.

Fortunately, Eq.~2.4! has the same mathematical structu
as the Ornstein-Zernike equation. The Ornstein-Zern
equation can be solved analytically for some fluids, if t
mean spherical approximation~MSA! is used. In the MSA,
the direct correlation functionci j is given as the sum of the
short-range and long-range contributions. IfCi j

1 can also be
given as such a sum, the procedure for solving Eq.~2.4! can
be simplified, as is found in the procedures concerning
MSA.

The behavior ofCi j
1 at a great distance betweeni and j

can be readily determined.
When the distance betweeni and j is sufficiently large,

ubui j u should be small. Equation~2.2! can then be approxi-
mated as

pi j ~r !5
4

3Ap
~2bui j !

3/22
4

5Ap
~2bui j !

5/2

1
2

7Ap
~2bui j !

7/21•••. ~3.3!

The substitution of this approximation into Eq.~3.2a! results
in

Ci j
15

ci j
PY

2bui j
F 4

3Ap
~2bui j !

3/22
22

15Ap
~2bui j !

5/21•••G
1Pi j F2bui j 2

4

3Ap
~2bui j !

3/22
1

2
~2bui j !

2

1
32

15Ap
~2bui j !

5/21•••G . ~3.4!

If ci j
PY/(2bui j )51 for the MSA is substituted into this re

sult, Ci j
1 for 1!r can be written as
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Ci j
1'4/~3Ap!~2bui j !

3/2. ~3.5!

To derive Eq. ~3.5! from Eq. ~3.4!, the condition
(2bui j )Pi j !4/(3Ap)(2bui j )

3/2 has been assumed for
!r .

The MSA results in the relation lim
r→`

@(gi j 21)/

(2bui j )#5 1
2 , since the PY approximation is given asgi j

PY

5ci j
PY/@12 exp(buij)#. The conditionPi j /(gi j 21)<1 is al-

ways satisfied, so thatPi j for 1!r should satisfy (gi j
21)/(2bui j )>Pi j /(2bui j ).Pi j /(2bui j )

1/2. Therefore,
the relation lim

r→`
Pi j /(2bui j )

1/250 can be derived. Thus

the above assumption is validated.

2. Behavior of Eq. (3.2a) forbuil > 0 and 1!r

When the distancer il betweeni andl is sufficiently large,
Eq. ~3.2a! can be approximated as

buil ~Pil 2Cil
1!1Cil

150, for buil .0.

For 1!r il , this relation must be satisfied, so that the dep
dence ofbuil Pil on r il should be the same as that ofCil

1 on
r il . As a result, an approximate formula for 1!r il can be
simplified as

buil Pil 52Cil
1 , for buil .0. ~3.6!

Thus,Cil
1 for buil .0 and 1!r il can be estimated, ifPil for

buil .0 and 1!r il are assumed.
For buil .0, pil (r ) is equal to zero. It is, however, pos

sible thatPil Þ0 occurs, since aj particle attracting eitheri
or l particles by the Coulomb force can exist. A cluster c
grow via a particle corresponding to thej particle which
satisfies the relationsbui j ,0(iÞ j ) andbujl ,0( j Þ l ).

C. Behavior of Cil
1 for buil >0

1. Behavior of Pil
1 for buil > 0 and 1!r

If L@1 is satisfied, the electroneutrality of the system c
be approximately expressed as

2p(
k

ekrkE
0

L1dL

gik~r !r 2dr1ei50, ~3.7!

wheredL/L!1.
If the relation given by Eq.~2.3! is considered, Eq.~3.7!

results in an approximation forPik(L) as

2p(
k

ekrkPik~L !L2dL

522p(
k

ekrkDik~L !L2dL

22p(
k

ekrkE
0

L

gik~r !r 2dr2ei . ~3.8!

A much larger value than that of the hard sphere diam
of the largest particle is then allowed fordL, since the varia-
tions in eitherPik(L) or Dik(L) can be sufficiently small,
even for a large change inL, if L is sufficiently large.
-

n

n

er

By consideringDik(L)'1(1!L) and the electroneutral
ity condition(kekrk50, a feature ofPik(L) for 1!L can be
found from Eq.~3.8! as

(
k

ekrkPik~L !50. ~3.9!

2. Behavior of Cil
1 for buil > 0 and 1!r

By substituting Eq.~3.6! into Eq. ~3.9!, an equation for
eachCil

1 whenbuil .0 should be satisfied is given as

(
l

for uil .0

elr l

buil
Cil

15 (
k

for uik,0

ekrkPik for r @1.

~3.10!

Using Eq.~3.3!, the expansion of Eq.~3.2a! in powers of
2bui j can be performed as

Pi j 52
ci j

PY

2bui j
F 4

3Ap
~2bui j !

1/21
16

9p
~2bui j !

1S 64

27p3/2
2

4

5Ap
D ~2bui j !

3/21•••G1
Ci j

1

2bui j

3F11
4

3Ap
~2bui j !

1/21S 1

2
1

16

9p D ~2bui j !1•••G .

~3.11!

If the approximation given by Eq.~3.5! and ci j
PY/(2bui j )

51 for the MSA are considered in Eq.~3.11!, the result can
be expressed as

Pi j 5
22

15Ap
~2bui j !

3/2 for ui j ,0. ~3.12!

Substituting Eq.~3.12! into Eq. ~3.10! results in

(
l

for uil .0

elr l

buil
Cil

15 (
k

for uik,0

ekrk

22

15Ap
~2buik!3/2.

~3.13!

Ultimately, Cil
1 for i and l particles satisfyinguil .0 can be

given by Eq.~3.13! if the value ofr is sufficiently large.

D. Expression of a simple closure scheme

1. A closure scheme similar to the MSA

Thus, a closure scheme similar to the MSA can be
tained using Eqs.~3.5! and ~3.13! as

Ci j
15Ci j

011
4

3Ap
~2bui j !

3/2 for bui j ,0, ~3.14a!

and
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(
l

as uil .0

elr l

buil
~Cil

12Cil
01!

5 (
k

as uik,0

ekrk

22

15Ap
~2buik!3/2 for buil .0, ~3.14b!

whereCi j
01 is the short-range contribution. If an ionic fluid

a two-component mixture, then Eq.~3.14b! is simplified as

Cii
15Cii

011
22

15Ap

ejr j

eir i
buii ~2bui j !

3/2 for bui j ,0.

~3.15!

Ultimately, Eq.~2.4! can be solved using the closure sche
given as the set of Eqs.~3.14a! and ~3.15!, if the ionic fluid
is a two-component mixture.

2. Additional simplification of the closure scheme

Mathematical difficulty cannot be avoided when applyi
the above mentioned closure scheme to analytically so
Eq. ~2.4!, because powers of the Coulomb potential are
cluded in the closure. To avoid this difficulty in the prese
work, the Coulomb potential is regarded as a Yukawa pot
tial in which the effective rangek21 is sufficiently large.
Thus,ui j is expressed as

ui j ~r !52Ki j

1

r
exp@2kr #, ~3.16a!

where

Ki j [2
a0

2

4pb

ei

e

ej

e
, ~3.16b!

with

a0
2[

4pbe2

e
. ~3.16c!

Here,e is the elementary charge ande the macroscopic di-
electric constant of the fluid.

Sinceui j is expressed using Eq.~3.16a!, the closure ob-
tained above includes factors which can be described
(exp@2kr#/r)n where n53/2 or 5/2. In order to obtain an
analytical solution for Eq.~2.4!, such a factor is approxi
mated as

S e2kr

r D n

'K
e2zr

r
, ~3.17!

whereK51/ăn21 and z5nk. For a particular value ofă,
Eq. ~3.17! can result in (exp@2kă#/ă)n5K exp@2ză#/ă. In the
present work, the maximum hard sphere diameter of parti
distributed in the fluid is applied asă.

Using this approximation, the closure scheme can be
pressed as

Ci j
1~r !5Ci j

01~r !1 (
n51

2

Ki j
n e2znr

r
, ~3.18a!
e

e
-
t
n-

as

es

x-

where

Ki j
1 [

4

3Ap
~bKi j !

3/2
1

ă1/2
~ iÞ j !, ~3.18b!

Kii
1[0, ~3.18c!

Ki j
2 [0 ~ iÞ j !, ~3.18d!

Kii
2[2

22

15Ap
~2bKi i !~bKi j !

3/2
1

ă3/2
~ iÞ j !, ~3.18e!

z1[
3

2
k, ~3.18f!

and

z2[
5

2
k. ~3.18g!

A hard core potential resulting in a completely sho
range interaction betweeni and j particles does not directly
contribute to the interaction between them when separa
beyond a particular distances i j . By considering this, for
Ci j

01 , it is assumed that

Ci j
01~r !50, for r>s i j , ~3.19!

wheres i j is given ass i j 5
1
2 (s i1s j ) for the diameters i of

the hard core of particlei and the diameters j of the hard
core of particlej. If the short-range contributionCi j

01 can be
neglected forr>s i j , the mathematical treatment of Eq.~2.4!
is considerably simplified, as it was in the MSA. As a resu
it is possible that use of Eq.~3.18a! simplifies the estimation
of percolation.

The approximate form given in Eq.~3.17! somewhat
overestimates the long-range contribution ofCi j

1(r ) if k is
zero, since the contribution of (1/r )n is approximated as
(1/ăn21)(1/r ). If uku!1 is satisfied whilek is not zero, the
approximate form given as Eq.~3.17! can somewhat overes
timate the decay ofCi j

1(r ), since the decay dependent o

(1/r )n is approximated as (1/ăn21)(1/r )exp(2nkr). Accord-
ing to a previous study of Yukawa fluids@12#, overestima-
tion of the long-range contribution ofCi j

1(r ) can lead to an
overestimation of 1/Ki j at the percolation threshold. Fortu
nately, the diagrams representing the percolation thresh
for the overestimation of the long-range contribution ha
the same pattern as those for the overestimation of the d
of Ci j

1(r ). Therefore, it is expected that a diagram patte
representing the percolation threshold obtained by the us
Eqs.~3.18a!–~3.18g! is valid, even for an ionic fluid.

IV. SOLUTION OF THE INTEGRAL EQUATION

A. Solution including unknown coefficients

1. Using Baxter’s Q function

For a single component fluid of particles interacting v
the Yukawa potential, a solution of Eq.~2.4! has been ob-
tained@12,13# using Baxter’sQ function @14#. Similarly, us-
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ing Baxter’sQ function@14# with Eqs.~3.18a!–~3.18g! given
for a two-component mixture, Eq.~2.4! can be solved ana
lytically. Based on the mathematical procedure for t
Orstein-Zernike equation@14,15#, Pi j (r ) andCi j

1(r ) satisfy-
ing Eq. ~2.4! for a multicomponent fluid are given by

2prPi j ~r !52
d

dr
Qi j ~r !12p(

k51

2

rkE
l jk

`

Qk j~ t !~r 2t !

3Pik~ ur 2tu!dt, for l j i <r ,`, ~4.1!

and

2prCi j
1~r !52

d

dr
Qi j ~r !

1 (
k51

2

rkE
sup[lk j ,lki2r ]

`

Qjk~ t !

3
d

dr
Qik~r 1t !dt, for l j i <r ,`, ~4.2!

wherel j i is defined using the hard-core diameterss i ands j

as l j i [
1
2 (s j2s i). The functionQi j (r ) in Eqs. ~4.1! and

~4.2! is introduced as

Q̃i j ~k!5d i j 2~r ir j !
1/2E

l j i

`

eikrQi j ~r !dr, ~4.3!

whered i j 50 (iÞ j ) andd i i 51.
The short-range contribution toCi j

1(r ) is expessed in Eq
~3.19!. The characteristic of the short-range contributi
Ci j

01(r ) can be provided byQi j (r ), since the relation be
tweenCi j

1(r ) andQi j (r ) can be represented by Eq.~4.2!. If
this fact and a characteristic of the long-range contribution
Ci j

1(r ) are considered, a form ofQi j (r ) may be expressed a

Qi j ~r !5Qi j
0 ~r !1 (

n51

2

D̆ i j
n e2znr ~l j i ,r ,s j i !, ~4.4a!

Qi j ~r !5 (
n51

2

D̆ i j
n e2znr ~s j i <r !, ~4.4b!

and

Qi j
0 ~r !50 ~s j i <r !. ~4.4c!

If lim ui j →`gi j 50 and lim
d→0

ui j (s i j 1d)5` (d.0) are

considered, the relationPi j 50 for l j i ,r ,s j i is derived
e

o

from Eq. ~3.1a!. Owing to this feature ofPi j , the function
Qi j (r ) derived from Eq.~4.1! for urku!1 cannot include
powers ofr in the rangel j i ,r ,s j i . If this is considered
with the feature ofQi j

0 (r ) given as Eq.~4.4c!, since the be-
havior ofQi j (r ) is expressed by Eq.~4.4a!, a form ofQi j

0 (r )
can be expressed as

Qi j
0 ~r !5 (

n51

2

C̆i j
n ~e2znr2e2zns i j ! ~l j i ,r ,s j i !.

~4.4d!

In addition, the unknown coefficientsC̆i j and D̆ i j given
above can be determined, using Eqs.~4.1! and ~4.2!.

If Eqs. ~4.4a!–~4.4d! and the relationPi j 50 are consid-
ered over the rangel j i ,r ,s j i , Eq. ~4.1! for r ,s j i results
in

(
n51

2

znC̆i j
n e2znr1 (

n51

2

znD̆i j
n e2znr

22p(
k51

2

(
n51

2

rkD̆k j
n e2znrE

0

`

Pik~ t !e2znttdt50.

~4.5!

Thus, the relation between the left- and right-hand sid
of Eq. ~4.5! gives the restrictions for the coefficients as

C̆i j
n 52D̆ i j

n 12p(
k51

2
rk

zn
P̂ik~zn!D̆k j

n , ~4.6a!

where

P̂ik~zn![E
0

`

Pik~ t !e2znttdt. ~4.6b!

If Eq. ~4.4b! is considered, then Eq.~4.2! can result in

2prCi j
1~r !5 (

n51

2

znD̆i j
n e2znr

2 (
n51

2

zne2znr (
k51

2

rkD̆ ik
n Q̂jk~zn!, for s j i ,r ,

~4.7!

where
Q̂jk~s![E
lk j

`

Qjk~ t !e2stdt5 (
m51

2 F C̆jk
me2slk je2zmsk jS ezms j2e2ss j

s1zm
2

12e2ss j

s D1
1

s1zm
D̆ jk

me2zmlk je2slk jG . ~4.8!
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Here, Eq.~4.8! can be derived using Eqs.~4.4a!–~4.4d!. The
relation betweenP̂jk(zn) and Q̂jk(zn) can be obtained by
substituting Eq.~4.6a! into Eq. ~4.8! as

Q̂jk~zn!5e2znlk j (
m51

2 H e2zmsk jD̆ jk
mS e2zns j

zn1zm
1

12e2zns j

zn
D

1(
l 51

2
2pr l

zm
P̂jl ~zm!D̆ lk

mFe2zmlk j

zn1zm
2e2zmsk j

3S e2zns j

zn1zm
1

12e2zns j

zn
D G J . ~4.9!

On the other hand, Eq.~4.1! for r ,s j i can be expresse
as

05 (
n51

2

znC̆i j
n e2znr1 (

n51

2

znD̆i j
n e2znr12p(

k51

2

rkE
r

`

Qk j~ t !

3~r 2t !Pik~ ur 2tu!dt. ~4.10!

Equation~4.10! is equivalent to Eq.~4.5! which has no sin-
gularity for 0,r ,`, so that Eq.~4.10! is satisfied for 0
,r ,`. If each term in Eq.~4.10! is then subtracted from
each term in an equation obtained as Eq.~4.1! for s j i <r , a
formula can be derived as

2prPi j ~r !52 (
m51

2

zmC̆i j
me2zmr12p(

k51

2

rkE
l jk

r

Qk j~ t !

3~r 2t !Pik~r 2t !dt. ~4.11!

The Laplace transformation of Eq.~4.11! results in

2p P̂i j ~s!52 (
m51

2
zm

s1zm
e2(s1zm)s i j C̆i j

m

12p(
k51

2

rkP̂ik~s!Q̂k j~s!. ~4.12!

2. A formula for determining P̂ij „zn… and D̆ij
n

By substituting Eqs.~4.6a! and ~4.9! into Eq. ~4.12! for
s5zn , a formula determining the relation betweenP̂i j (zn)
and D̆ i j

n can be obtained as

2p P̂i j ~zn!5 (
m51

2
zm

zn1zm
e2(zn1zm)s i j

3S D̆ i j
m22p(

k51

2
rk

zm
P̂ik~zm!D̆k j

m D
12p(

k51

2

rkP̂ik~zn!e2znl jk

3 (
m51

2 H e2zms jkD̆k j
mS e2znsk

zn1zm

1
12e2znsk

zn
D1(

l 51

2
2pr l

zm
P̂kl~zm!
3D̆ l j
mFe2zml jk

zn1zm
2e2zms jkS e2znsk

zn1zm

1
12e2znsk

zn
D G J . ~4.13!

Since uznu!1 is satisfied foruku!1, if terms including
either the first order ofzn or all higher orders ofzn are
neglected, then Eq.~4.13! can be simplified as

2p P̂i j ~zn!5 (
m51

2
zm

zn1zm
D̆i j

m

22p (
m51

2

(
k51

2

rkD̆k j
m 1

zn1zm
@ P̂ik~zm!2 P̂ik~zn!#

12p (
m51

2

(
k51

2

rkskP̂ik~zn!D̆k j
m

12p2 (
m51

2

(
k51

2

(
l 51

2

rkr l P̂ik~zn!P̂kl~zm!D̆ l j
msk

2 .

~4.14!

This approximation of Eq.~4.13! should be recognized as a
approximation derived from the use of Eq.~3.18a! for both
uku!1 andkÞ0. In fact, Eq.~4.14! contains the coefficients
zn .

In Eq. ~4.14!, the ratio @1/(zn1zm)#@ P̂ik(zm)2 P̂ik(zn)#
for uku!1 can be readily estimated. If the differenc
2p@ P̂i j (zn)2 P̂i j (zn8)# is calculated using Eq.~4.14!, then a
formula can be obtained as

(
m51

2
zm~zn82zn!

~zn1zm!~zn81zm!
D̆ i j

m

22p (
m51

2

(
k51

2

rkD̆k j
mH 1

zn1zm
@ P̂ik~zm!2 P̂ik~zn!#

2
1

zn81zm

@ P̂ik~zm!2 P̂ik~zn8!#J 50 ~nÞn8!,

~4.15!

where uP̂ik(zm)2 P̂ik(zn)u!1 for uku!1 is considered. Ac-
cording to Eq.~4.6b!, uP̂ik(zm)2 P̂ik(zn)u!1 for uku!1 can
be satisfied because ofzn!1 andzn8!1 for uku!1. If Eq.
~4.15! is used, the ratio@1/(zn1zm)#@ P̂ik(zm)2 P̂ik(zn)# for
uku!1 can be estimated as

2p
P̂i j ~z1!2 P̂i j ~z2!

z11z2
5

1

2

z12z2

z11z2

1

r i
d i j .

Using this result, Eq.~4.14! can be somewhat simplified as
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2p P̂i j ~zn!5 (
m51

2
zm

zn1zm
D̆i j

m2
1

2 (
m51

2

D̆ i j
m zm2zn

zm1zn

12p (
m51

2

(
k51

2

rkskP̂ik~zn!D̆k j
m

12p2 (
m51

2

(
k51

2

(
l 51

2

rkr l P̂ik~zn!P̂kl~zm!D̆ l j
msk

2 .

~4.16!

Equation ~4.16! is an approximate expression foruku!1,
while it is derived from Eq.~3.18a! for kÞ0. This is a
remarkable fact.

In addition, the evaluations ofP̂i j (z1) and P̂i j (z2) for
bothkÞ0 anduku!1 are considerably simplified by consid
ering the relationP̂i j (z1)5 P̂i j (z2) for uku!1. This relation
allows the use of a simple expression defined as

P̂i j [ P̂i j ~z1!5 P̂i j ~z2! for uku!1. ~4.17!

3. Another formula for determining P̂ij „zn… and D̆ij
n

On the other hand, if Eq.~3.19! is considered, the subst
tution of Eq.~3.18a! into Eq. ~4.7! results in

2pK̂ i j
n 5znD̆i j

n 2 (
k51

2

znrkD̆ ik
n Q̂jk~zn!. ~4.18!

By substituting Eq.~4.9! into Eq. ~4.18!, another formula to
determine the relation betweenP̂i j (zn) and D̆ i j

n can be ob-
tained as

2pKi j
n 5znD̆i j

n 2 (
m51

2

(
k51

2

rkD̆ ik
n D̆ jk

me2znlk j

3e2zmsk j
zn1zm2zme2zns j

zn1zm

2 (
m51

2

(
k51

2

(
l 51

2

rkD̆ ik
n D̆ lk

m 2pr l

zm
P̂jl ~zm!

3e2znlk je2zmsk j
2zn2zm1zme2zns j1znezms j

zn1zm
.

~4.19!

Sinceuznu!1 is satisfied foruku!1, if terms including either
the first order ofzn or all higher orders ofzn are neglected,
Eq. ~4.19! can be approximated as

2pKi j
n 52 (

k51

2

rkD̆ ik
n (

m51

2

D̆ jk
m zn

zn1zm
. ~4.20!

This approximation of Eq.~4.19! should be recognized as a
approximation derived from Eq.~3.18a! for both uku!1 and
kÞ0. In fact, Eq.~4.20! contains the coefficientszn . This is
a remarkable fact. In addition, Eq.~4.20! can simplify the
evaluation ofD̆ i j

n for kÞ0, since the term includingP̂i j can
be neglected foruku!1.
B. Estimation of D̆ ij
1 and D̆ ij

2

1. Forms provided for D˘ ij
1 and D̆ij

2

By considering Eq.~4.20! for n52 and iÞ j , and Eq.
~3.18d!, the relation betweenD̆ i j

1 andD̆ i j
2 can be assumed a

S D̆11
2 D̆12

2

D̆21
2 D̆22

2 D 5S U~a1!D̆11
1 U~a2!D̆12

1

U~ta1!D̆21
1 U~ta2!D̆22

1 D , ~4.21a!

where

U~x![
z2 /z1

z2 /z111

2x

22x
. ~4.21b!

In Eq. ~4.21a!, a1 , a2, andt are unknown coefficients.
If Eq. ~4.21a! is used, Eq.~4.20! for n51 and i 5 j , and

Eq. ~3.18c! can result in the expression forD̆ i j
1 as

S D̆11
1 D̆12

1

D̆21
1 D̆22

1 D 5S I 1Az1A1e1 I 2Az1A2e2

I 3Az2B1e1 I 4Az2B2e2
D , ~4.22a!

where

1

A1
[

1

2
1

1

z2 /z111
U~a1!, ~4.22b!

1

A2
[

1

2
1

1

z2 /z111
U~a2!, ~4.22c!

1

B1
[

1

2
1

1

z2 /z111
U~ta1!, ~4.22d!

1

B2
[

1

2
1

1

z2 /z111
U~ta2!, ~4.22e!

and

uI 1u5uI 2u5uI 3u5uI 4u51. ~4.22f!

To derive Eq.~4.22a!, Eq. ~4.20! for n51 andi 5 j has been
compared with the electroneutrality condition( ieir i50.
This comparison results in

1

2
D̆ i j

1 1
1

z2

z1
11

D̆ i j
2 5

z iej

D̆ i j
1

, ~4.23!

wherez i are unknown coefficients. The relation expressed
Eq. ~4.23! is the reason why the coefficientsz i have been
contained in Eq.~4.22a!.

In addition, an equation similar to Eq.~4.23! can be de-
rived from Eq.~4.20! for n52 andiÞ j as

z2

z1

z2

z1
11

D̆ i j
1 1

1

2
D̆ i j

2 5
z i8ej

D̆ i 8 j
1

~ i 851 for i 52, i 852 for i 51!. ~4.24!
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If D̆ i j
2 expressed by Eq.~4.21a! are considered, the substitu

tion of D̆ i j
2 into Eq. ~4.24! leads to four equations for dete

mining the relation betweenz i8 andt. The relation isz18/z28
5t.

The substitution of Eq.~4.23! into Eq.~4.20! for n51 and
iÞ j yields

22pKi j
1 5 (

k51

2

rkD̆ ik
1 z jek

D̆ jk
1 ~ iÞ j !. ~4.25a!

By consideringKi j
1 5K ji

1 , the ratio of Eq.~4.25a! for i 51
and j 52 to Eq.~4.25a! for i 52 and j 51 results in

D̆21
1 D̆22

1

D̆11
1 D̆12

1
52

z2

z1
. ~4.25b!

The substitution of Eq.~4.24! into Eq. ~4.20! for n52 and
i 5 j results in

22pKii
2 5 (

k51

2

rkD̆ ik
2

z i8ek

D̆i 8k
2

~ i 851 for i 52,i 852 for i 51!. ~4.26a!

The ratio of Eq.~4.26a! for i 51 to Eq. ~4.26a! for i 52
results in

D̆11
2 D̆12

2

D̆21
2 D̆22

2
52

1

t

K11
2

K22
2

, ~4.26b!

where the relationz18/z285t is considered. IfD̆ i j
2 expressed

by Eq. ~4.21a! are substituted into Eq.~4.26b!, then a for-
mula is obtained by considering the ratioz1 /z2 given by Eq.
~4.25b! as

z15S e1

e2
D 2

t
~22a1!~22a2!

~22ta1!~22ta2!
z2 , ~4.27!

where the relationK11
2 /K22

2 5(e1 /e2)2 has been considered
The ratioK11

2 /K22
2 can be estimated using Eq.~3.18e!.

If D̆11
1 expressed by Eq.~4.22a! is considered, the subst

tution of D̆11
1 into Eq. ~4.25b! leads to

152
I 3I 4

I 1I 2

z1

z2

U z1

z2
UA

B1B2

A1A2
.

From this equation, two relations can be extracted as

I 3I 4

I 1I 2

z1

z2

U z1

z2
U 521, ~4.28a!

and

A1A25B1B2 , ~4.28b!
where

A1A2,0, B1B2,0. ~4.28c!

According to Eq.~4.22a!, the following relations must be
satisfied:

z1A1e1.0, z1A2e2.0, ~4.28d!

z2B1e1.0, z2B2e2.0, ~4.28e!

where

e1e2,0. ~4.28f!

By considering Eq.~4.28f!, Eqs.~4.28d! and ~4.28e! lead to
the relation given by Eq.~4.28c!.

After Eq. ~4.23! is substituted into Eq.~4.20! for n51 and
iÞ j , if Eqs. ~3.18b!, ~4.27!, and~4.28b! are considered with
D̆ i j

1 expressed by Eq.~4.22a!, a formula for estimatingz2 can
be obtained as

z252
1

18f

I 3

I 1
S a0

2

s1
D 3/2s1

4

e1
S ue1u

e D 3S ue2u
ue1u D

5/2

3F S t
~22a1!~22a2!

~22ta1!~22ta2!

A1

B1
D 1/2

2
I 2I 3

I 1I 4
S t

~22a1!~22a2!

~22ta1!~22ta2!

B1

A1
D 1/2G21

, for ă5s1 ,

~4.29a!

where

f[
p

6
s1

3r1 . ~4.29b!

2. A formula for estimating a1 , a2, and t

If D̆ i j
2 expressed by Eq.~4.21a! are considered, product

D̆ ii
1 D̆ i 8 i

1 estimated by substitutingD̆ i j
2 into Eq. ~4.24! can ob-

tain the ratioD̆11
1 D̆21

1 /D̆22
1 D̆12

1 as

D̆11
1 D̆21

1

D̆22
1 D̆12

1
5

e1

e2

~22ta1!~22a1!a2

~22ta2!~22a2!a1
.

If D̆ i j
1 expressed by Eq.~4.22a! is substituted into the

above, a formula including only three coefficients (a1 ,a2 ,t)
can be obtained as

2I
I 1I 3

I 2I 4
5

a2~22a1!@22~124RR8!ta1#

a1~22ta2!@22~124RR8!a2#
, ~4.30a!

where

R[

z2

z1

z2

z1
11

, ~4.30b!



.

s.

-

q.
ts

ra

.

g

nd

PRE 60 6751PERCOLATION IN IONIC FLUIDS AND FORMATION . . .
R8[
1

z2

z1
11

. ~4.30c!

By modifying Eq. ~4.28b! with the substitutions of Eqs
~4.22b!–~4.22e!, a formula can be obtained as

~22a1!@22~124RR8!ta1#

~22ta1!@22~124RR8!a1#

5
~22ta2!@22~124RR8!a2#

~22a2!@22~124RR8!ta2#
.

To derive Eq.~4.30a!, this relation has been used with Eq
~4.22b!–~4.22e!. Moreover, the relationuI u51 is required for
uA2 /B1u[IA2 /B1 in order to obtain Eq.~4.30a!. If the rela-
tions given by Eqs.~4.28a!–~4.28f! are considered, the rela
tion I (I 1I 3 /I 2I 4)51 can be found.

Thus, the three coefficientsa1 , a2, andt are restricted by
Eq. ~4.28b!, so that if the restriction is considered in E
~4.30a!, a formula for estimating the three coefficien
(a1 ,a2 ,t) can be obtained as

a2~22ta1!@22~124RR8!a1#

1a1~22a2!@22~124RR8!ta2#50. ~4.31!

Equation~4.31! does not include factors concerning tempe
ture, density, and charge. This is a remarkable fact, sinceD̆ i j

1

and D̆ i j
2 are composed ofa1 , a2, and t as shown by Eqs

~4.21a!–~4.22f!.

V. MEAN SIZE OF PHYSICAL CLUSTERS

A. Cluster size for a finite value ofk21

The equilibrium numberns of physical clusters consistin
of s particles can be related to the pair connectednessPi j ,
according to the formula given by Coniglio, DeAngelis, a
Foriani @11#, as

(
2<s

s~s21!ns5(
i 51

2

(
j 51

2

r ir jE
V
E

V
Pi j ~r i ,r j !dr idr j .

~5.1!

If the probability p( i ) that particlei exists in a cluster is
independent ofs, then (ssns included in Eq.~5.1! can be
related to the densityr i of the i particles in the volumeV as

r i5
1

V
p~ i !(

s
sns . ~5.2!

Since the mean physical cluster sizeS is given by S
5((ss

2ns)/((ssns), the substitution of Eqs.~5.1! and ~5.2!
into this formula results in

S511S (
k51

2

rkD 21

(
i 51

2

(
j 51

2

r ir jE Pi j ~r !dr . ~5.3!

On the other hand, the Fourier transform of Eq.~2.4! is
given as
-

(
k51

2

@d ik1~r irk!
1/2P̃ik~k!#@dk j2~rkr j !

1/2C̃k j~k!#

5d i j , for uku5k, ~5.4!

where

P̃i j ~k![E Pi j ~r !eik•rdr , C̃i j ~k![E Ci j ~r !eik•rdr .

The relation betweenC̃i j (k) andQ̃ik(k) is given as

d i j 2~r ir j !
1/2C̃i j ~k!5 (

k51

2

Q̃ik~k!Q̃jk~2k!,

so that Eq.~5.4! results in

d i j 1~r ir j !
1/2P̃i j ~k!5 (

k51

2

Q̃ki
21~2k!Q̃k j

21~k!. ~5.5!

Thus, Eq.~5.5! results in

(
k51

2

Q̃ki
21~0!Q̃k j

21~0!5d i j 1~r ir j !
1/2E Pi j ~r !dr . ~5.6!

Ultimately, the substitution of Eq.~5.6! into Eq.~5.3! results
in

S5(
i 51

2 F (
j 51

2 S (
k51

2
rk

r i
D 21/2

Q̃i j
21~0!G2

. ~5.7a!

Therefore, percolation is generated ifQ̃i j
21(0) reaches infin-

ity.
According to the comparison between Eqs.~4.3! and

~4.8!, the relation betweenQ̃i j (0) andQ̂i j (0) is given as

Q̃i j ~0!5d i j 2~r ir j !
1/2Q̂i j ~0!. ~5.7b!

If Eq. ~5.7b! is used,Q̃i j
21(0) is expressed as

S Q̃11
21~0! Q̃12

21~0!

Q̃21
21~0! Q̃22

21~0!
D 5@zndetuQ̃i j ~0!u#21zn

3S 12r2Q̂22~0! Ar1r2Q̂12~0!

Ar2r1Q̂21~0! 12r1Q̂11~0!
D ,

~5.7c!

where

detuQ̃i j ~0!u[12r1Q̂11~0!2r2Q̂22~0!1r1r2Q̂11~0!Q̂22~0!

2r1r2Q̂12~0!Q̂21~0!. ~5.7d!

If Eq. ~4.8! is used,Q̂i j (0) can be derived as
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Q̂i j ~0!5 (
m51

2 H e2zms j i D̆ i j
mS 1

zm
1s i D1 (

k51

2
2prk

zm
P̂ik~zm!D̆k j

m

3Fe2zml j i

zm
2e2zms j i S 1

zm
1s i D G J . ~5.8!

B. Percolation threshold for zkz!1

1. Restriction for values of a1 , a2, and t

Furthermore, ifuznu!1 for uku!1 is considered,Q̂i j (0)
given by Eq.~5.8! can be approximated as

Q̂i j ~0!5s i (
m51

2

q̂i j
m1 (

m51

2
1

zm
D̆i j

m , ~5.9a!

where

q̂i j
m[D̆ i j

m1ps i (
k51

2

rkP̂ik~zm!D̆k j
m . ~5.9b!

Although the behavior ofQ̂i j (0) for uku!1 is represented
by Eq. ~5.9a!, the divergence of detuQ̃i j (0)u for uku!1 can
be avoided. The restriction required for avoiding this div
gence can be found using Eqs.~5.7d! and ~5.9a! as

U (
m51

2
1

zm
D̆11

m (
m51

2
1

zm
D̆12

m

(
m51

2
1

zm
D̆21

m (
m51

2
1

zm
D̆22

mU50. ~5.10!

If Eq. ~4.21a! and Eqs.~4.22a!–~4.22e! are substituted
into Eq. ~5.10!, the formula for estimating the three coeffi
cients (a1 ,a2 ,t) can be obtained as

~22a2!@22~122R8!ta2#@22~124RR8!ta1#

3@22~122R8!a1#1~22ta2!@22~122R8!a2#

3@22~124RR8!a1#@22~122R8!ta1#50. ~5.11!

To obtain Eq.~5.11!, the relationI 8(I 1I 3 /I 2I 4)521 is re-
quired. Here,I 8 is defined asuA1 /B1u[I 8A1 /B1. If the re-
lation given by Eqs.~4.28a!–~4.28f! is considered, the rela
tion I 8(I 1I 3 /I 2I 4)521 can be found. Equation~5.11! is
used with Eq.~4.31! for estimatinga1 , a2, andt.

Equation~5.11! does not include factors concerning tem
perature, density, and charge. This is similar to Eq.~4.31!
and is a remarkable fact. In addition,D̆ i j

1 and D̆ i j
2 are com-

posed ofa1 , a2, andt as given by Eqs.~4.21! and ~4.22!.

2. Percolation threshold

If the relations given by Eq.~5.7d! and Eq.~5.10! are
considered, the factorzndetuQ̃i j (0)u found in Eq.~5.7c! can
be approximated foruku!1 as
-

zndetuQ̃i j ~0!u52 (
m51

2 S r1D̆11
m zn

zm
1r2D̆22

m zn

zm
D

1r1r2 (
m51

2

(
m851

2 S s1q̂11
m zn

zm8

D̆22
m8

1
zn

zm
D̆11

ms2q̂22
m82s1q̂12

m zn

zm8

D̆21
m8

2
zn

zm
D̆12

ms2q̂21
m8D . ~5.12!

If zndetuQ̃i j (0)u reaches zero under a certain condition, th
Q̃i j

21(0) diverges to infinity. This means that the mean phy
cal cluster sizeS given by Eq.~5.7a! diverges to infinity.
Therefore, the percolation threshold should be estimated
particular states at whichzndetuQ̃i j (0)u50 is satisfied. Thus,
a requirement for the percolation threshold can be obtai
from Eq. ~5.12! as

r1D̆11
1 1r2D̆22

1 1
z1

z2
~r1D̆11

2 1r2D̆22
2 !

2r1r2 (
m51

2

(
k51

2

@s1d1k1ps1
2rkP̂1k~zm!#

3S D̆k1
m D̆22

1 1
z1

z2
D̆k1

m D̆22
2 2D̆k2

m D̆21
1 2

z1

z2
D̆k2

m D̆21
2 D

2r1r2 (
m51

2

(
k51

2

@s2d2k1ps2
2rkP̂2k~zm!#

3S D̆k2
m D̆11

1 1
z1

z2
D̆k2

m D̆11
2 2D̆k1

m D̆12
1 2

z1

z2
D̆k1

m D̆12
2 D50.

~5.13!

Here, Eq.~5.9b! definding q̂i j
m is considered to derived Eq

~5.13!.

VI. SPECIFIC IONIC FLUIDS

A. Fluid composed of point charges and sized particles

1. Formulas for evaluating the percolation threshold

Percolation in an ionic fluid composed of point charg
and sized particles can be estimated somewhat simply
evaluate the percolation threshold, the coefficients expres
as P̂11(z1), P̂12(z1), and P̂21(z1) in Eq. ~4.16! must be
evaluated. In an ionic fluid, the evaluation of these coe
cients can be somewhat simplified.

By considerings1Þ0 ands250 for the ionic fluid, Eq.
~4.16! for i 51 and j 51 results in a formula includingP̂11

and P̂12 as

1

T̆

1

Af
52S f

s1
2P̂12D 1S̆S f

s1
2P̂11D 1

S̆

144S f

s1
2P̂11D 21

1
S̆

6
,

~6.1a!
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where

S̆[
e2

e1

11U~a1!

11U~ta1!

D̆11
1

D̆21
1

, ~6.1b!

and

T̆[
36

p

e1

e2
@11U~ta1!#I 3Az2

s1
4 B1e1f. ~6.1c!

In the above, the expression given by Eq.~4.17! is consid-
ered. To obtain the expression in Eq.~6.1a!, D̆ i j

2 expressed

by Eq. ~4.21a! and D̆ i j
1 expressed by Eq.~4.22a! have been

used with the electroneutrality conditione1r11e2r250 and
the volume fractionf defined by Eq.~4.29b!. In addition,f
should be of a positive value, so thatI 3 in Eq. ~6.1c! can be
determined.

For an ionic fluid, the difference between Eq.~4.16! for
i 51 and j 52, and Eq.~4.16! for i 52 and j 51 can be
simplified by considerings1Þ0, s250, and P̂122 P̂2150
for uku!1. As a result, the difference is written as

1

2
~D̆12

1 2D̆21
1 !1

1

2
@U~a2!D̆12

1 2U~ta1!D̆21
1 #22pr1s1D̆11

1

3@11U~a1!# P̂1222p2r1r2s1
2D̆21

1 @11U~ta1!#

3 P̂12P̂121$2pr1s1D̆12
1 @11U~a2!#12p2r1s1

2

3$r2D̆22
1 @11U~ta2!#2r1D̆11

1

3@11U~a1!#%P̂12%P̂1112p2r1
2s1

2D̆12
1

3@11U~a2!# P̂11P̂1150. ~6.2!

To obtain the expression in Eq.~6.2!, D̆ i j
2 expressed by Eq

~4.21a! has been used. If the volume fractionf and the elec-
troneutrality conditione1r11e2r250 are considered, Eq
~6.2! results in

2
1

144S 12
11U~ta1!

11U~a2!

D̆21
1

D̆12
1 D 2S f

s1
2P̂11D 2

2
1

6 S f

s1
2P̂11D

1ŬS f

s1
2P̂11D S f

s1
2P̂12D 1

1

6
V̆S f

s1
2P̂12D

2
e1

e2

11U~ta1!

11U~a2!

D̆21
1

D̆12
1 S f

s1
2P̂12D 2

50, ~6.3a!

where

Ŭ[
e1

e2

11U~ta2!

11U~a2!

D̆22
1

D̆12
1

1
11U~a1!

11U~a2!

D̆11
1

D̆12
1

, ~6.3b!

and

V̆[
11U~a1!

11U~a2!

D̆11
1

D̆12
1

. ~6.3c!
Equations~6.1a! and~6.3a! are used to evaluate the values
P̂11 andP̂12. In Eqs.~6.1a! and~6.3a!, the coefficientsS̆, T̆,
Ŭ, and V̆ are independent of temperature, density, a
charge, ifue1u equalsue2u.

In addition, the relation expressed by Eq.~6.3a! should be
satisfied, even when the value off is sufficiently small. This
requires that the first term on the left-hand side of Eq.~6.3a!
is zero. This fact leads to the restriction for the coefficie
(a1 ,a2 ,t) as

22~122R!a22@22~122R!ta1#
I 3

I 1

3Fe2

e1

~22ta2!@22~124RR8!a2#

t~22a1!@22~124RR8!ta1#
G 1/2

50, ~6.4!

where D̆ i j
1 expressed by Eq.~4.22a! has been used in th

derivation. Equation~6.4! is used with Eqs.~4.31! and~5.11!
for estimatinga1 , a2, andt.

Equation~6.4! does not include factors concerning tem
perature and density. Basically, such a feature of Eq.~6.4! is
similar to that of Eq.~4.31! and~5.11!, except for the charge
Equation~6.4! with Eqs.~4.31! and~5.11! indicates thata1 ,
a2, and t are independent of temperature, density, a
charge, if ue1u equalsue2u. The ratiosD̆ i j

1 /D̆kl
1 can also be

independent of temperature, density, and charge, ifue1u
equalsue2u. According to Eq.~4.22a!, the ratios are com-
posed of coefficientsa1 , a2, andt.

2. The relation between Pˆ
11 and P̂12 at the percolation threshold

The relation betweenP̂11 and P̂12 at the percolation
threshold can be derived from the substitution ofD̆ i j

2 ex-

pressed by Eq.~4.21a! andD̆ i j
1 expressed by Eq.~4.22a! into

Eq. ~5.13!. Thus, the obtained relation is

W̆
1

Af
52X̆26X̆S f

s1
2P̂11D 26Y̆S f

s1
2P̂12D , ~6.5a!

where

W̆[
p

6

e2

e1

1

I 4
S z2

s1
4 B2e2f D 21/2F11

z1

z2
U~a1!G

3F 12
e1

e2

11
z1

z2
U~ta2!

11
z1

z2
U~a1!

I 4

I 1
Az2B2e2

z1A1e1G ,

~6.5b!

X̆[@11U~a1!#F11
z1

z2
U~ta2!G1@11U~a2!#

3F11
z1

z2
U~ta1!GB1

A1
, ~6.5c!

and
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Y̆[2
e1

e2
S 12

z1

z2
D @U~ta1!2U~ta2!#

I 2

I 1
AA2e2

A1e1
.

~6.5d!

To obtain the expression in Eq.~6.5a!, e1r11e2r250, s1
Þ0, ands250 have been considered, withf defined by Eq.
~4.29b!. The coefficientsX̆ andY̆ in Eq. ~6.5a! are indepen-
dent of temperature, density, and charge, ifue1u equalsue2u.
In addition,f should be of a positive value, so thatI 4 in Eq.
~6.5b! can be determined.

The values of (f/s1
2) P̂11 and (f/s1

2) P̂12 at the percola-
tion threshold are evaluated using Eqs.~6.1a!, ~6.3a!, and
~6.5a!. These equations indicate that the factors (f/s1

2) P̂11

and (f/s1
2) P̂12 at the percolation threshold are independ

of s1 andf.

3. Evaluation of the percolation threshold

Using Eq.~6.5a! with Eqs.~6.1a! and~6.3a!, the values of
f, P̂11, andP̂12 at the percolation threshold are determine
The percolation thresholds shown in Fig. 1 are evalua
using these equations. The coefficientsa1 , a2, and t are
evaluated using Eq.~6.4! with Eqs.~4.31! and ~5.11!.

The curves shown in Fig. 1 demonstrate that percola
is generated at a smaller value off if the value of ue2u is
larger. On the contrary, percolation is generated at a la
value off if the electric field on the surface of the partic
corresponding toi 51 is weaker. Such phenomena mean t
developed dense regions can be formed in an ionic fl
containing more highly charged particles, even if the den
of the particles is lower. If the ionic fluid is composed
smaller particles, percolation can be generated at a sm
value of f, since the electric field on the surface of ea
particle is strong.

The evaluation of the percolation threshold includes
contribution of the expression for closure. The relation b

FIG. 1. Percolation thresholds for ionic fluids satisfying the co
ditions s250 and 4pbe2/e58.7931027 cm. Each curve repre
sents a percolation threshold. Percolation takes place under the
dition specified by the point belonging to the upper region of e
curve. The dot-dash line representss15131026 cm and e2 /e
51, the solid lines15531027 cm ande2 /e51, the dashed line
s15531027 cm ande2 /e52, and the dot-dot-dash lines155
31027 cm ande2 /e53. For the evaluations, ratios concerningI 1 ,
I 2 , I 3, and I 4 are determined asI 2I 3 /I 1I 451, I 2 /I 1521, I 3 /I 1

521, andI 4 /I 151. In addition,f is dimensionless.
t

.
d

n

er

t
id
y

ler

e
-

tween the closure expression and the percolation thres
should be considered, although it has already been bri
discussed in Sec. III D 2.

The decay of closure expressed by Eq.~3.14a! depends on
r 23/2. If the closure is expressed by the form of Eq.~3.18a!,
then the decay of closure depends onr 21s1

21/2exp (23
2kr),

which can be determined using the maximum diameters1 of
the distributed particles. The decay of closure expressed
Eq. ~3.15! depends onr 25/2. If the closure is expressed b
the form of Eq.~3.18a!, the decay of closure then depends
r 21s1

23/2exp(25
2kr). Equation~3.18a! is a simplified closure

scheme for solving the integral equation analytically.
Equation~3.18a! provides an overestimation of the long

range contribution of the closure, ifk is regarded as zero. I
k is not zero, it is possible that Eq.~3.18a! for uku!1 pro-
vides an overestimation of the decay of closure. The effec
the former can result in an overestimation ofe1 andf at the
percolation threshold. Evaluation under the condition rela
to the latter can underestimatee1 and f at the percolation
threshold. These are considered on the basis of a prev
study of Yukawa fluids@12#.

Equation ~4.16! containing the coefficientszn is an ap-
proximation derived by use of Eq.~3.18a! for both uku!1
andkÞ0. Equation~4.20! also is an approximation derive
from Eq. ~3.18a! for both uku!1 andkÞ0. Therefore, Eq.
~4.20! contains the coefficientszn . All the formulas derived
from Eqs.~4.16! and~4.20! do not depend on the magnitud
of k, although Eqs.~4.16! and~4.20! contain the coefficients
zn . For the estimate of percolation, the magnitude ofk is not
required, if the conditionuku!1 is satisfied. This is an ad
vantage for simplifying the estimation.

In contrast, the degree of overestimation for the decay
closure cannot be determined, when the magnitude ofk is
unknown. It is not clear whether the percolation thresho
expressed in Fig. 1 can provide a quantitative estimat
Fortunately, it is expected that the pattern of the curves r
resented in Fig. 1 can provide a fair estimate. This is s
ported by a previous study@12#.

The behavior of (fp/s1
2) P̂11

p and (fp/s1
2) P̂12

p in Fig. 2 is
evaluated from Eqs.~6.1a!, ~6.3a!, and~6.5a!. Here, the val-
ues ofP̂11 andP̂12 at the percolation threshold are express
asP̂11

p andP̂12
p , respectively. The expressionfp is the value

-

on-
h

FIG. 2. Correlations between 1-1 particles and between 1-2
ticles in an ionic fluid satisfying the conditionss1Þ0, s250, and
4pbe2/e58.7931027 cm. For the evaluations, ratios concernin
I 1 , I 2 , I 3, and I 4 are determined asI 2I 3 /I 1I 451, I 2 /I 1521,

I 3 /I 1521, and I 4 /I 151. In addition, (fp/s1
2) P̂i j

p is dimension-
less.
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of f at the percolation threshold. According to Fig.
(fp/s1

2) P̂12
p is much larger than (fp/s1

2) P̂11
p .

The coefficientsP̂11 and P̂12 found in Eqs.~6.1a!, ~6.3a!,
and ~6.5a! are quantities corresponding to the integral giv
in Eq. ~4.6b!. Hence, the magnitude ofP̂11 depends on the
probability that particles correspoding toi 51 belong to a
cluster. The magnitude ofP̂12 depends on the probability tha
a particle correspoding toi 51 and a particle correspoding t
i 52 belong to a cluster.

Thus, it is possible that the magnitude ofP̂11 is large, if
the probability is high that a particle corresponding toi 51 is
located near another particle corresponding toi 51. Simi-
larly, it is possible that the magnitude ofP̂12 is large, if the
probability is high that a particle corresponding toi 52 is
located near a particle corresponding toi 51.

These interpretations forP̂11 and P̂12 can result in an
additional interpretation based on the relation (fp/s1

2) P̂11
p

!(fp/s1
2) P̂12

p expressed by Fig. 2. Namely, a pair of 1
particles~a positive-negative particle pair! can be regarded a
a unit, which constitutes a dense area in the ionic fluid. A
cording to this interpretation, it is inferred that the therm
dynamics based on the Bjerrum theory can provide a sa
factory description.

As found in Fig. 1, an increase inue1u results in a decreas
in fp. Either (fp/s1

2) P̂11
p or (fp/s1

2) P̂12
p continue to be suf-

ficiently constant for an increase inue1u. Hence, Fig. 2 indi-
cates that the increase inue1u results in increases in bothP̂11

p

and P̂12
p . An increase inue2u also results in a decrease infp

as shown in Fig. 1, even whenue1u has a constant value. Fo
an increase inue2u, both P̂11

p and P̂12
p increase also. The be

havior of P̂11
p and P̂12

p reveals that the generation of a no
uniform distribution of particles can be enhanced by an
crease in the charge on each particle.

B. The percolation in a fluid consisting of point charges

When an ionic fluid system is composed of only po
charges,s150 ands250, so that Eq.~5.13! for estimating
the percolation threshold results in an equation expresse

05r1F11
z1

z2
U~a1!G I 1Az1A1e1

3F 12
e1

e2

11
z1

z2
U~ta2!

11
z1

z2
U~a1!

I 4

I 1
Az2B2e2

z1A1e1G . ~6.6!

To obtain Eq.~6.6!, Eqs.~4.21a! and ~4.22a! are considered
with the conditione1r11e2r250. The percolation thresh
old in the fluid can be evaluated using Eq.~6.6! with Eqs.
~6.1a! and ~6.3a!.

Equation~6.6! does not have the factors concerning te
perature, density, and charge ifue1u equalsue2u, sincer1 and
Az1A1e1 can be eliminated from Eq.~6.6!. The percolation
threshold forue1u5ue2u is then independent of temperatur
density, and charge.
-
-
s-

-

t

as

-

This result is reasonable. It is considered that the p
potential u12(r ) can diverge toward2` for T50, since
point charges in a classical fluid can be extremely close
each other. On the other hand, the relative kinetic energyE12
cannot exceeduu12(r )u for a finite temperature. Thus, it i
inferred that the conditionE12,uu12(r )u is always satisfied.

For ue1uÞue2u, the percolation threshold depends o
e1 /e2. This fact is unreasonable, since the percolat
threshold is independent of temperature and density. I
considered that a defective result can be avoided if an
proved expression for closure can be obtained and the i
gral equation can be solved with the use of it.

VII. FRACTAL STRUCTURE

In an ionic fluid, dense regions are generated, while
distribution of particles becomes nonuniform. Each dense
gion can be regarded as an ensemble of particles boun
each other by an attractive force. The dominant portion
particles distributed in a dense region can be particles c
stituting pairs linked by the attractive force. Particles cons
tuting each pair should then satisfy the conditionEi j
1ui j (r )<0.

A cluster of i particles characterized byPii (r ) is an en-
semble ofi particles bound to each other viaj particles sat-
isfying the conditionui j (r ),0. Each pair in the ensembl
then satisfies the conditionEi j 1ui j (r )<0. It is expected
that the structure of the cluster described byPii (r ) can pro-
vide a feature of the dense region structure. The pair c
nectednessPii (r ) can be estimated using Eqs.~3.6! and
~3.15!.

For a two component mixture, Eq.~3.6! is rewritten as

buii ~r !Pii ~r !52Cii
1~r !. ~7.1!

If Eq. ~3.15! for r @1 is substituted into Eq.~7.1!, then
Pii (r ) for r @1 is estimated as

Pii ~r !52
22

15Ap

ejr j

eir i
„2bui j ~r !…3/2 ~ iÞ j !. ~7.2!

According to Eq.~7.2!, the average distribution ofi par-
ticles in a cluster decays as

Pii ~r !;r 2a, a51.5. ~7.3!

This means that the cluster has a fractal structure with
fractal dimension 1.5 (532a).

Thus, it is expected that the dense region formed in
ionic fluid has a fractal structure. In fact, a fractal structu
with the fractal dimension 1.9 was found for a nonunifor
colloidal suspension@10#. It is considered that the fracta
dimension found in the present work is close to that for
nonuniform colloidal suspension.

According to Eq.~7.2!, the dependence ofPii (r ) on r can
be independent of the sign of the charge. Therefore, the
cay of the positive charge distribution in a cluster depends
r 23/2, and the decay of the negative charge distribution in
cluster also depends onr 23/2. Thus, each decay in the cluste
has the same dependence onr. As a result, a large cluste
having a fractal structure can be generated in the ionic flu
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VIII. CONCLUSIONS

The nonuniform distribution of particles in an ionic flui
can be developed by increasing the charge on each par
A bound state ‘‘Ei j 1ui j (r )<0’’ between positive-negative
particles can significantly contribute to the formation
dense regions in the ionic fluid.

This is supported by the relation (fp/s1
2) P̂11

p

!(fp/s1
2) P̂12

p given at the percolation threshold.
From this relation, it can be interpreted that the proba

ity that 1-2 particles approach each other is much higher t
the probability that 1-1 particles approach each other, eve
the percolation threshold. According to this fact, a config
ration of charged particles can agree with that of the Bjerr
theory.

Each dense region formed in the ionic fluid has a frac
structure with the fractal dimension 1.5. This fractal dime
sion is close to the known fractal dimension (;1.75) for the
fractal structure resulting from cluster-cluster aggregation

To solve the integral equation for the pair connectedn
function, a closure scheme is required. The expression
closure given in the present work results in the overestim
.

,

. E

ys
le.

l-
n
at
-

l
-

s
or
-

tion of the long-range contribution of closure, ifk is re-
garded as zero. IfkÞ0 is satisfied even foruku!1, it is
possible that the expression results in an overestimatio
the decay of closure. The effect of the former can result in
overestimation ofe1 and f at the percolation threshold
Evaluation under the condition related to the latter can
derestimatee1 andf at the percolation threshold.

For percolation estimates in the present work, the mag
tude of k is not required, ifuku!1 is satisfied. This is an
advantage for simplifying the estimate.

In contrast, the degree of overestimation for the decay
closure cannot be estimated, when the magnitude ofk is
unknown. For this reason, it is not clear whether the per
lation threshold given in the present work can be quant
tively estimated. It is expected, however, that the pattern
the curves representing the percolation threshold can pro
a valid estimate.
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