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Percolation in ionic fluids and formation of a fractal structure
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The size of a dense region in the nonuniform distribution of particles generated in an ionic fluid can develop
under certain conditions, as the charge on each patrticle increases. To derive this result, it is assumed that such
a dense region is an ensemble of particles linked to each other as particle pairs that satisfy the dgndition
+u;;(r)=<0, whereE;; is the relative kinetic energy farandj particles andi; (r) the Coulomb potential. The
percolation of the ensemble can be estimated analytically. The result described above has been derived from
this estimation. According to the pair connectedness function derived for analytic estimation of the percolation,
the dense region resulting from the contribution of the Coulomb attractive force between positive and negative
particles can produce a fractal structure with a fractal dimension of 1.5. Furthermore, a configuration of
charged particles, which can be approximately drawn from a characteristic of the pair connectedness function,
agrees with that of the Bjerrum theofy51063-651X99)11012-3

PACS numbes): 61.43.Hv, 64.60.Ak, 61.20.Qg, 82.70.Dd

[. INTRODUCTION Recently, a mathematical treatment for estimating the
mean size of ionic clusters was presented for an ionic fluid
The distribution of charged particles in an ionic fluid composed of charged particles having the same[6izé\s a
tends toward a nonuniform state, even if the densities ofesult, a numerical calculation is available for evaluating the
charged patrticles are low. Dense areas generated in the distean cluster size.
tribution can significantly contribute to the thermodynamics In the present work, the mean size of the dense areas is
of the ionic fluid. Models describing the contribution of the estimated as that of the physical clusters described above.
dense areas have been propogkd3]. The present interest The percolation concerning the dense regions is regarded as
is focused on estimating the mean size of the dense areasthat concerning the physical clusters. The percolation is ana-
The tendency mentioned above can be attributed to thigtically estimated, using an integral equation with a closure
characteristic of the Coulomb force. A force acting betweerscheme.
positive and negative charged particles is characterized as a To derive an analytical solution for the integral equation,
long-range attractive force. The attractive force can contriba practical expression for closure is required. The expression
ute to the formation of dense regions even in the fluid of lowwill be obtained by estimating the behavior of the correlation
densities. functions at a great distance. The expression for a two-
Each dense region can be an ensemble composed of patemponent mixture will be given in Sec. Il D. An analytical
ticles bound to each other by the attractive force. The domisolution for the integral equation will be presented in Sec.
nant portion of particles distributed in a dense region can bé&v/. Requirements for the percolation threshold will be de-
occupied by particles constituting pairs linked by the attracrived in Sec. V B. The percolation thresholds estimated for
tive force. Particles constituting each pair should then satisfywo ionic fluids will be given in Sec. VI.

the conditionE;; + u;;(r)<0. Here,E;; andu;;(r) for a pair Besides the thermodynamics of ionic fluid described

of i andj particles are the relative kinetic energy and pairabove, the percolation resulting from the contact of dense

potential, respectively. areas can affect other phenomena. The electrical transport
In the present work, a bond between tlandj particlesis  phenomenon can be one of such phenomena.

defined as a state satisfying the conditi+ u;;(r)<0 [4]. In an ionic fluid, a group of charged particles which can

An ensemble of particles linked by such bonds is a physicafreely migrate for the external electric field is distinguished
cluster in the present work. The dense area is regarded as tfrem another group of charged particles which cannot freely
physical cluster of particles linked by bonds described viamigrate. If each charged particle constituting a pair satisfies
the conditionE;; + u;;(r)<0. the conditionE;; +u;;(r)<0, the charged particles cannot
For a discussion of the critical thermodynamics of anfreely migrate away from each other.
ionic fluid, the Bjerrum theory1] can result in a satisfactory If the external electric field applied to the ionic fluid is
description[3]. However, it has been indicated that an ionic weak, charged particles of the dense area can hardly contrib-
cluster model, beyond the ion pair model based on the Bjerdte to the electrical transport phenomenon induced by the
rum theory, should be considered for estimating precisely thexternal electric field. The dense area can then be polarized
thermodynamics of ionic fluid3]. Also, the thermodynamic only by the external electric field. A free charged particle,
necessity for including clustering has been explicity demonwhich at least is not part of the dense areas, can significantly
strated[5]. contribute to the electrical transport. As the densities of par-
ticles increase under the electrical neutrality condition, the
number of dense areas should increase. Free charged par-
*Electronic address: kanekous@ppp.bekkoame.ne.jp ticles contributing to the electrical transport should then de-
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crease. Thus, the electrical conductivity of an ionic fluid, dueg;;(r) is given using the grand partition function, a bound
to the transport of charged particles, can decrease as the destate Ej; +u;;(r)<0 can be distingished in its expression
sities of charged particles increase. from an unbound stat&;; + u;;(r)>0. The pairwise bond
On the other hand, it is possible that the electrical conprobability p;;(r) can then play a role. The factor
ductivity of an ionic fluid can increase as the densities ofexp(—Bu;) in the expression can be expessed as the sum of
charged particles increase, if the densities of the chargethe contributions to the bound state and the unbound state, if

particles are high. pij(r) is used. Thus, the sum is
If the densities are high, a sufficiently developed dense
region can be generated since some portions of the dense e‘ﬁuijzpij(r)e‘ﬁuii+[1—pij(r)]e‘ﬁuii, (2.1

regions are in contact with each other. If a percolated dense
region is generated, the percolated dense region can contrihereg is defined agg=1/kT. Here,k is Boltzmann’s con-
ute to the electrical transport as a path for the electric currenstant, andT the temperature. The pairwise bond probability
The electrical transport via the percolated dense region ip;;(r) introduced in Eq(2.1) is given as

effective, since the contribution to the electric current can be

generated by only a small shifft of each charged particle due Cap [TPY gy

to the external electric field. An increase in the densities of pij(r)=2m fo y“eVdy, 2.2
charged particles can increase the size of each dense region.

Thus, an increase in density can enhance electrical condu
tivity.

Ultimately, as the densities increase from a sufficiently
low level, the electrical conductivity of the ionic fluid can
decrease, and reach a minimum. For additional increases
density, the electrical conductivity can increase due to th
contribution of percolated dense regions to the electrica
transport.

In addition, the behavior similar to that of the electrical
conductivity described above has been found in a phenon*2

Wherey:[,BEij]”2 [4]. This function represents the prob-
ability that a pair ofi andj particles satisfies the condition
Eij+u;(r)<0. If Bu;>0, the probability should be
P-J-(r)=0. In addition, pair potentials satisfying the relation
?Huij >0 for an ionic fluid are the repulsive Coulomb poten-
ial and the hard core potential.
Ultimately, Eqg.(2.1) signifies that the Mayef function
fij=e P4i—1 is the sum of a factof;] contributing to the
ound state, and another factq’f not contributing to the

enon demonstrated experimentdIg]. bound state. According to E¢R.1), fﬁ andfi’} are given as
Hydrodynamical transport phenomena should also be in- N _ s
fluenced by percolation concerning the physical clusters de- fij=pij(rye" "

scribed above. A viscosity anomaly was detected near the
critical consolute point of an ionic ethylammonium nitrate- and
n-octanol mixturg8]. It is considered that such percolation . .
can contribute to the viscosity anomaly. f*=[1—pjj(r)Je” Pi—1.
The growth of a dense region can result from the contact
of small dense areas. This growth process is found to be The pair connectedne$;(r) is useful for estimating the
similar to the growth process known as cluster-cluster aggrecluster size [11], and is defined as the probability
gation [9]. The distribution of particles resulting from pip;P;j(r)dr;idr; that both the particle in a volume element
cluster-cluster aggregation resulted in the fractal structuredr; and thej particle in a volume elementr; belong to the
while the fractal dimensiomi; of the fractal structure was Same physical cluster. In the aboyg,andp; are the densi-
determined asl;~ 1.75[9]. ties of thei andj particles for a uniform distribution, respec-
In a suspension of charged colloidal particles also, it hagively. If the probability that the particle indr; and thej
been demonstrated that the generated nonuniform distribyparticle indr; do not belong to the same cluster is expressed
tion of colloidal particles can provide a fractal structure. Theasp;p;D;;j(r)dr;dr;, P;;(r) can be related to the pair corre-

fractal dimension of the structure was 11]. lation functiong;;(r) as
If the contribution of cluster-cluster aggregation to the
growth process of dense areas is considered, it can be pre- gij=Pij+Djj . 2.3

dicted that a developed dense region has at least a fractal
structure. Moreover, the fractal dimension of the fractalHere, the physical meanings Bf; and of Dj; require that
structure should be close to 1.75. The pair connectedness
estimated in the present work will demonstrate that a cluster limP;;=0 and IlimD;;=1,
provides a fractal structure having a fractal dimension close r—o r—o
to 1.75. This will be revealed in Sec. VII.
since Iimegijzl. In addition, if a cluster has a fractal

structure, then Pj;(r), according to the feature of

pipjPij(r)dridr;, provides the characteristics of the fractal
In the present work, a bound state for ihendj particles  structure.

is defined as the state satisfying the conditiBn+ uj;(r) Mayer's mathematical clustefdiagrams defined in terms

<0 having a pair potential;; (r) and relative kinetic energy of f bondg constitutingg;; can be expressed as mathematical

=T clusters consisting of;; andf}, since the sunf; +f is

When the expression of the pair correlation functionequal to the Mayef function f;; .

Il. PAIR CONNECTEDNESS
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A physical cluster consisting of particles bound to each [1-p;i(r)]e A
other under the conditiok;; +u;;(r)<0, can be extracted i 2 —Ci
from the mathematical clusters as a mathematical cluster in- 1-[1—pjj(r)Je FHi

cluding the product of . PY
If eachf;; is defined in terms of ah* bond, thef* bond — Pij (1)Cj

corresponds to the pair of particles satisfying the condition (1—ePi){1—[1—p;;(r)]e i}

Eij +u;;(r)=<0. Particles jointed by " bonds form a physi-

cal cluster. If the physical cluster includesndj particles, —and

the physical cluster consists of the particles contributing to a

diagram having at least one path of all the bonds between CSY

the root pointsi andj, at which thei andj particles are Dij=—Pj+ 1 eBui” (3.2h

located. Hence, such diagrams are those that contribute to

P..

(3.2a

Equation(3.2a can be used as closure for £g.4), if ¢;;" is

IJ ’ . . . .
The cgll-ectmrr]] of dlagrfams contributing t?‘i (zjan +be given. Equation$3.23 and(3.2b are applicable when either
separated into the sum of two parts, namély and Njj . Bu;<0 or Bu;;>0, respectively.

Here, the parcﬁ is the contribution of non-nodal diagrams * |, 4ddition Eq. (3.2 shows that the symmetrg;:
having at least one path of i bonds betweenandj. The ~ _ ~+ ’ .
partN;; represents the contribution of nodal diagrams having "
at least one path of afl" bonds betweenand;. Hence,ijr

can be determined by the convolution integral of the product

of Cﬁ and P;;. Thus,P;; can be expressed by an integral 1. Behavior of G for Bu;;<0 and I<r
equation[11] having the same mathematical structure as theé The closure scheme given by E@.24a is not a practical
Ornstein-Zernike equation, namely way to solve Eq(2.4) analytically.

is maintained due to the symmetRy; =P;; .

B. Behavior of C; for 1<r

m Fortunately, Eq(2.4) has the same mathematical structure
P;=Ci+ > Pkf CikPydry, (2.4  as the Ornstein-Zernike equation. The Ornstein-Zernike
k=1 equation can be solved analytically for some fluids, if the
) ) mean spherical approximatidiMSA) is used. In the MSA,
wheremiis the number of species. the direct correlation function;; is given as the sum of the
short-range and long-range contributionsC[f can also be
lll. CLOSURE SCHEME FOR SIMPLIFYING given as such a sum, the procedure for solving Bg) can
THE MATHEMATICAL TREATMENT be simplified, as is found in the procedures concerning the
MSA.

A. Simple closure scheme for the integral equation ) N ) ) .
i ) The behavior ofC;; at a great distance betweerand
A closure scheme for Eq2.4) must be obtained to esti- ., pe readily determined.
mateP;; . When the distance betweérandj is sufficiently large,

Using the contribution;; of the QOdal diagrams  fof | Buij| should be small. Equatiof2.2) can then be approxi-
bonds, the pair-correlation functlogﬁ due to the Percus- ated as

Yevick (PY) approximation can be expressed gf§'e?"i

=1+N;;. If the relation e*B“ii:fﬁJrfi’]Jrl is used, the 4 b B
above approximation becomes i (r)=—=(—Bu;;)¥°— —=(—Bu;)*
pp Pij (1) 3JE( Buij) sﬁ( Buij)
9= (LHNG NS+ (F5 DN+ (F5+ 1) (1+N]), X
. . . . +——(—Bu:)"+. ... 3.3
whereN;; is the sum ofojr and a remaindeN;; (i.e.,Nj is 7\/;( Buij) 33

all nodal diagrams which do not include paths of &lfl
bonds betweenandj). The terms in the above equation can The substitution of this approximation into E@.2a results
be separated into those constitutiRg and those constitut- i

ing Djj, by considering the forng;; = P;; + D;; . If the rela-

tion Pj; =C§+Nﬁ is considered, the expressions corre- cPY

sponding toP;; and Dj; can be determined from the Cﬁ= -

——=(—Buy)*+- -

_ (_ \3/2_
3\/;( Bulj) 15\/;

separated terms as — Buij

— PY i L 4 1
Plj_fiergij eBu]+(fﬁ+l)(Plj CJ) (313 +Pij _Buij_ (_Buij)3/2_ _(_:Buij)z
N 2
and
) 32
Dij=(fﬁ+1)gﬁveﬁuu—(fﬁ+1)(Pij—c§). (3.1b (= Buy) . 3.4)
15/

By considering f;; =p;;(r)e A%, e Ali=f +fx+1,
and the PY approximatiog;;"(1—e®i)=cf", Egs.(3.13  If c¥/(— Bu;)=1 for the MSA is substituted into this re-
and(3.1b can be rewritten as sult, Cﬁ for 1<r can be written as
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Ci ~41(3\m)(— Buij) 2 (3.9

To derive Eg. (3.5 from Eg. (3.4), the condition

(— Bu;j) Pij<4/(3\m)(— Bu;;)*? has been assumed for 1

<r.
The MSA results in the relation lim_[(g;—1)/

( ,BU”)] 3, since the PY approximation is given g§"

/[1 exp(Bu;j)]. The conditionP;; /(g;;—1)<1 is al-
Ways satisfied, so thaP;; for 1<r should satisfy ¢;;
—1)/(—Bu;j)=P;; I(— Bu”)>P I(— Bu;;) Y2 Therefore

the relation Iim Pl (= ,8u,,)1’ =0 can be derived. Thus,

the above assumption is validated.

2. Behavior of Eqg. (3.2a) forBu; >0 and 1<r

When the distance, between andl is sufficiently large,
Eq. (3.29 can be approximated as
Bui (P —

CIJIF)_'—CIT:O’ fOI‘ Bui|>0.

For 1<r;,, this relation must be satisfied, so that the depen- Pij

dence ofBu; P onr;, should be the same as that@j on
. As a result, an approximate formula fokt; can be
simplified as
BU”P” = _CiT, for ,8u”>0. (36)
Thus,C; for Bu;>0 and 1<r; can be estimated, P; for
Bu;; >0 and 1<r; are assumed.

For Bu;; >0, p;(r) is equal to zero. It is, however, pos-

sible thatP; #0 occurs, since @ particle attracting either
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By consideringD;, (L)~1(1<L) and the electroneutral-
ity condition,ep =0, a feature oP; (L) for 1<L can be
found from Eq.(3.8) as

; expiPi(L)=0. (3.9

2. Behavior of G for Bu;>0 and I<r

By substituting Eq.(3.6) into Eqg. (3.9), an equation for
eachC;] when Bu; >0 should be satisfied is given as

ekkaik for r>1.

€ip
2I ﬁull C %

for u;>0 for uj,<0

(3.10

Using Eq.(3.3), the expansion of Eq3.23 in powers of
— Bu;; can be performed as

TR ! o, 16
—Buy ﬁ(_ﬁuij) +%(_Buij)
64 i
/ ij
+(277T3/2 5\/_)( BU|])32+ + _,Buij
X 1+i( BU; )1’2+(1 — (= Buj)+- -
3\/— ij ij .
(3.11)

or | particles by the Coulomb force can exist. A cluster canif the approximation given by Eq3.5) and c© /(—,8uij)

grow via a particle corresponding to theparticle which
satisfies the relationgu;;<0(i #j) and Bu; <0(j #I).

C. Behavior of C;f for Bu;>0
1. Behavior of P for Bu;>0 and 1<r

=1 for the MSA are considered in E¢.11), the result can
be expressed as

Pij=——=(—Bu;)*? for u;<O0. (3.12

15(

If L>1 is satisfied, the electroneutrality of the system can

be approximately expressed as
L+ oL
2772 ekpkf gi(r)rédr+e=0, 3.7

whereSL/L<1.
If the relation given by Eq(2.3) is considered, Eq3.7)
results in an approximation fd?; (L) as

2772 ekpkpik(L)LzéL
k
:_2772 ekkaik(L)thsL
k

L
_ZWEK ekka'O gik(r)rzdl’—ei . (38)

A much larger value than that of the hard sphere diameter

of the largest particle is then allowed féL., since the varia-

tions in eitherP; (L) or D; (L) can be sufficiently small,

even for a large change In if L is sufficiently large.

Substituting Eq(3.12 into Eq.(3.10 results in

&P 22 3
Z Buy " Ek: ekpk—ls\/;( Bui) <

for u;>0 for uj<0

(3.13

Ultimately, C;; for i andl particles satisfyingi; >0 can be
given by Eq.(3.13 if the value ofr is sufficiently large.

D. Expression of a simple closure scheme
1. A closure scheme similar to the MSA

Thus, a closure scheme similar to the MSA can be ob-
tained using Eq93.5 and(3.13 as

Cii= c°++—( Bu;;)%? for Bu;<0, (3.143

3w

and
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Pi
(Ci—cih

> Bu

as u;;>0

-3

as Uuj<0

— Bu;)®? for Bu;>0, (3.14h

22 (
pkls\/;

whereC?j+ is the short-range contribution. If an ionic fluid is

a two-component mixture, then E(B.14b is simplified as

€jpj

157 &P

Cir=Ci"+ == Buii(— Buy)¥2 for Bu;;<0.

(3.19

TETSUO KANEKO

Ultimately, Eq.(2.4) can be solved using the closure scheme

given as the set of Eq$3.149 and(3.15), if the ionic fluid
is a two-component mixture.

2. Additional simplification of the closure scheme

PRE 60
where
4 1
1_ 32— Cp
Kij_3\/;(:3K|J) 51/2 (|¢J)1 (3-18b
Ki=0, (3.189
Ki=0 (i#]), (3.189
K= 22 (- Ki) /c--)3’Zi i#] (3.189
i 15\/;( B i (:8 ij 53/2 ( J)v .
3
21=5x, (3.18%
and
5
=75 k. (3.189

Mathematical difficulty cannot be avoided when applying
the above mentioned closure scheme to analytically solve A hard core potential resulting in a completely short-
Eq. (2.4), because powers of the Coulomb potential are inf@nge interaction betweenandj particles does not directly
cluded in the closure. To avoid this difficulty in the presentcontribute to the interaction between them when separated

work, the Coulomb potential is regarded as a Yukawa potenPeyond a particular distance;; .

tial in which the effective rangec*!

Thus,u;; is expressed as

is sufficiently large.

1
ui,-(r):—IC,JFexq—Kr], (3.16a
where
2
B 47 e e’ '
with
5 41 Be?
ap= (3.160

Here, e is the elementary charge ardthe macroscopic di-
electric constant of the fluid.

Sincevu;; is expressed using E¢3.163, the closure ob-
tained above includes factors which can be described
(exd —«r]/r)” where »=3/2 or 5/2. In order to obtain an
analytical solution for Eq(2.4), such a factor is approxi-

mated as
e*KI’ v
]
r

whereK=1/a""! and z= v«. For a particular value o,
Eq. (3.17 can result in (exp- «xa]/a)’=K exq —zal/a. In the

e*Zr

(3.17

present work, the maximum hard sphere diameter of particles

distributed in the fluid is applied .

Using this approximation, the closure scheme can be ex-

pressed as

—Zyr

Cii(n=Cci(n+ E K ——,

(3.183

By considering this, for

C0+

ij » itis assumed that

(3.19

whereo;; is given asojj = 2(0’,+0'J) for the diametewr; of
the hard core of particlé and the diameter; of the hard
core of particlg. If the short-range contrlbutloﬁ can be
neglected for =o;; , the mathematical treatment of HG.4)

is considerably simplified, as it was in the MSA. As a result,
it is possible that use of E@3.18a simplifies the estimation
of percolation.

The approximate form given in Eq3.17) somewhat
overestimates the long-range contributionch(r) if kis
zero, since the contribution of ()/ is approximated as
(L/a*~Yy(1/r). If |k|<1 is satisfied whilex is not zero, the
approximate form given as E¢B.17 can somewhat overes-
timate the decay oC; j(r), since the decay dependent on

()7 is approxmated as (471 (1/r)exp(= vkr). Accord-

489 to a previous study of Yukawa fluid42], overestima-

tion of the long-range contribution (ﬁﬁ(r) can lead to an
overestimation of ¥;; at the percolation threshold. Fortu-
nately, the diagrams representing the percolation threshold
for the overestimation of the long-range contribution have
the same pattern as those for the overestimation of the decay
of C! i (r). Therefore, it is expected that a diagram pattern
representlng the percolation threshold obtained by the use of
Egs.(3.183—(3.189 is valid, even for an ionic fluid.

Ci (=0, for r=0y,

IV. SOLUTION OF THE INTEGRAL EQUATION
A. Solution including unknown coefficients
1. Using Baxter’'s Q function

For a single component fluid of particles interacting via
the Yukawa potential, a solution of E¢R.4) has been ob-
tained[12,13 using Baxter'sQ function[14]. Similarly, us-
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ing Baxter'sQ function[14] with Egs.(3.183—(3.189 given  from Eq. (3.189. Owing to this feature oP;;, the function

for a two-component mixture, E42.4) can be solved ana- Qj(r) derived from Eq.(4.1) for [p/<1 cannot include

lytically. Based on the mathematical procedure for thepowers ofr in the range)\ <r<oj. If this is considered

Orstein-Zernike equatiofl4,19, P;;(r) and C,J (r) satisfy-  with the feature on (r) given as Eq(4.40, since the be-

ing Eq. (2.4) for a multicomponent fluid are given by havior of Q;;(r) is expressed by E4.49, a form on”(r)
can be expressed as

d 5 ("
2mrPy(r)= = G Qy(n+2m 2, pkL_ Qui((r=1)
* QY r)—Z &N (e~ ar —e i) (\;<r<oy).
X Pic([r—t))dt, for \jj=<r<oo, 4.9

(4.40
and . .
In addition, the unknown coefficient€;; and D;; given
N d above can be determined, using E@1) and (4.2).
2mrCij(r)=— 4, Qii(1) If Egs. (4.4a—(4.4d and the relatiorP;;=0 are consid-
) ered over the range; <r <oj; , Eq.(4.1) for r <o results
@ in
+ > ij Qjk(t)
k=1 SUPNgj Aki—r]
2
d AN -z, SN o= zr
X g Qu(r+0dt, for Aj<r<e, (4.2 nzl zCije ﬂ; zDjje
where); is defined using the hard-core diameteysand o _2772 2 pkbﬂje_z”rfxpik(t)e_z"ttdtzo-
as\j= %(Uj—ai). The functionQ;;(r) in Egs. (4.1) and
4.2) is introduced as
(4.2 4.5
Qij(k): 8 —(PiPJ)”ZJ 'er,J(r)dr 4.3 Thus, the relation between the left- and right-hand sides
Aji of Eq. (4.5 gives the restrictions for the coefficients as

where ;=0 (i#]) and g;;= .
The short-range contrlbutlon ©;; (r) is expessed in Eq. =n

(3.19. The characteristic of the short range contribution Cii= D"+27TE 'k(Z”)DkJ’ (4.69

C°+(r) can be provided byQ;(r), since the relation be-

tweenC i (r) andQjj(r) can be represented by E@.2). If ~ where

this fact and a characteristic of the long-range contribution to

ij'(r) are considered, a form @;;(r) may be expressed as

Pi(zn)= f:Pik(t)e*Znttdt. (4.6b

2
Qii(N=QJ(N+ > Die ™ (\;<r<oj), (4.43
n=1 If Eq. (4.4b is considered, then E@4.2) can result in

2

i(r)y=2>, Dlle @ (oy=r), (4.4b) 2
Qi (") nzl B (=) 2wrCﬁ(f):2 z,Djje "'
and
0 _Z Zne_znrkZ pkbi"kéjk(zn), for O'ji<r,
Qij(r)=0 (oj=r). (4.40 n=1 =1
. - . ~ 4.7
If I|muij%,gij—0 and lim,_ u;;(ojj+6)= (5>0) are
considered, the relatioP;=0 for \;j<r<oj is derived where
~ ” st 22: —S\kia—Z em7i—e > 1-e™™i 1 Zm\ SN
. = . - kj mIkj — mikja™ >Mkj
Qjk(s) ijQlk(t)e dt= 2 ie j sz, S +s+sz“‘e ie"sNi|. (4.9
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Here, Eq.(4.8) can be derived using Eq&t.4a—(4.4d. The @~ Zm\jk o e~ Zn%%k
relation betweerP;(z,) and Q;(z,) can be obtained by i\z+z, © K 2tz
substituting Eq(4.63a into Eq. (4.8) as
1—e %%
Sz —e S, | i S, 12 it @13
2 (2,)=e “nhkj ~ZmIkj + n
Qji(Zn = K\ z,+ 2z, z,
e~ Zmhk Since |z,|<1 is satisfied forlx|<1, if terms including
+2 _PJ|( m DIk S & ™ either the first order of, or all higher orders ofz, are
n m : e
neglected, then Ed4.13 can be simplified as
o ey "
+ . :
ZntZn Zy _ 22: Zn o m
On the other hand, Eq4.1) for r<o7j; can be expressed ZWP”(Z”)_mﬂ Zn+ sz‘i

as

1
2 2 2 - —2772 Ekak ——[Pix(zm)—Pix(z)]
0= zCle ™+ zDle *+2m>, pkf Qii(t) = 'z, + 2 T
n=1 n=1 k=1 r
2 2

X(r_t)Plk(|r_t|)dt (41@ +2’7TmE=1 kzl pkakﬁ’ik(zn)f)kmj

Equation(4.10 is equivalent to Eq(4.5 which has no sin- 2 2 2

gularity for 0<r <, so that Eq.(4.10 is satisfied for 0 £ 22 2 \P.(z o2
<r<oo. If each term in Eq(4.10 is then subtracted from mE:l kzl Z pipiPi(20) Pra(zm) Do
each term in an equation obtained as 1) for oj<r, a

formula can be derived as .14
z o r This approximation of Eq(4.13 should be recognized as an
2Py (r)= —m§=:1 chir]jefz’“%z”gl PkJ}\_ Qij() approximation derived from the use of E@®.183 for both
|k|<1 andk=0. In fact, Eq.(4.14 contains the coefficients
X(r_t)Pik(r_t)dt. (41]) Z,.

In Eq. (4.14, the ratio[ 1/(z,+z) [ Pix(zm) — Pi(z) ]
for |k|<1 can be readily estimated. If the difference
2 27 Pyj(z,) — Pij(zyr)] is calculated using Eq4.14), then a

27.,{3”(3): > e (S+Zm)UIij formula can be obtained as
m=1 S+ Zn

The Laplace transformation of E¢.11) results in

2

+27Tk21 prPik(8)Qyj(9). (4.12

Zm(zn’_zn) 5m

ij
1 (Zn+ Zm)(zn’ + Zm)

HMN

2. A formula for determining B;(z,) and D]
By substituting Eqs(4.6a and (4.9 into Eq. (4.12 for
s=z,, a formula determining the relation betweé’ri](zn)
andD] can be obtained as -

1
—2772 Z pkD kj[z 7, [Plk(zm) Plk(zn)]

[ﬁ)ik(zm)_ﬁ)ik(zn’)]}zo (n#n'),
2 an+2m

~ Zm

. = —(zn*Z,y) o (415)
27TP|J(Zn) mE:l Zn+Zme n" Zm) 7ij

where |Pi(zm) — Pic(z,)| <1 for |«|<1 is considered. Ac-
cording to Eq.(4.6b), |Piy(zm) — Pik(zn)| <1 for |k|<1 can
be satisfied because af<1 andz, <1 for |k|<1. If Eq.
(4.19 is used, the rati®1/(z,+ zy) [ Pix(zm) — Pic(zn)] for
|k|<1 can be estimated as

2

—273, PPz DY
k=1 Zm J

2

+2m >, pPi(z,) e ik
k=1

2 — 2,01
. [ e %k R N

X E eZm”jkDE}( Pij(zl)_ Pij(ZZ) 1 Z1— 1

m=1 Zn+zm 2 i -

Zl+22 2 Zl+ZZ p| !

1-e 27| 2 27p) A

+ ) +> Pui(Zm) : : N
Z, =1 Znm Using this result, Eq(4.14) can be somewhat simplified as
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2

&

=1 Znt2Zy ]

m

2
~ . 1 . Zm—Z
27Pij(z,) = Dim_EmE:l D

Yzt z,
2 2
+2m > > PkoPi(Z,) D]
m=1 k=1

2 2 2
+2W2mE:1 kgl 21 piP1 Pik(2n) Pi(2m) D of .

(4.16

Equation (4.16 is an approximate expression fok|<1,
while it is derived from EQq.(3.183 for k#0. This is a
remarkable fact.

In addition, the evaluations oP;;(z;) and P;;(z,) for
both k#0 and|«|<1 are considerably simplified by consid-
ering the relatiorP;;(z;) = P;;(zy) for |«|<1. This relation
allows the use of a simple expression defined as

Pij=Pij(z)=Pij(z) for |k|<1. (4.17

3. Another formula for determining B (z,) and D]

On the other hand, if Eq3.19 is considered, the substi-
tution of Eq.(3.183 into Eq. (4.7) results in

2
27K =2,0 = 2 zopDiQi(z). (418
By substituting Eq(4.9) into Eq. (4.18, another formula to
determine the relation betwed;(z,) and D{; can be ob-
tained as

2 2

E > pDDike™ M

27TKin]-=
=1 k=1

+2z,—zme 7
Zn+Zm

Zn
X e— Zm(rkj

. o 2TP|a
DInlerE_Z Pii(zm)

m

—Zy—Zmt+ Zne” i+ z,e"mY]

xXe~ Zn}‘kje_ ZmOkj
Zn+ Zm

(4.19

Since|z,|<1 is satisfied fof k| <1, if terms including either
the first order ofz, or all higher orders of, are neglected,
Eq. (4.19 can be approximated as

27K} = Z ka,kE D (4.20

Kz +zm

This approximation of Eq4.19 should be recognized as an
approximation derived from Eq3.18a for both|«|<1 and
x#0. In fact, Eq.(4.20 contains the coefficients,. This is

a remarkable fact. In addition, E¢4.20 can simplify the
evaluation oﬂ5i”j for k#0, since the term includin@ij can
be neglected fofx|<1.
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B. Estimation of D} and D}
1. Forms provided for T} and Dj

By considering Eq.(4.20 for n=2 andi#j, and Eq.
(3.180, the relation betweeD;: andD can be assumed as

551 biz U(al)bil U(az)biz
S | @2
D31 D3 U(7ra;)D3; U(7az)D3,
where
Ulo= Z,/z;  2x 401
(X)=22/21+1 2—x’ (4.210

In Eq. (4.213, a;, a,, andr are unknown coefficients.
If Eq. (4.213 is used, Eq(4.20 for n=1 andi=j, and
Eq. (3.1809 can result in the expression féilj as

Di, D, l1VGAer 1oV EAe,
o = . (4.223
D3, D3, I3vVoBier 14\ (B2e,
where
! _l—i- U 4.22
A2 i+l (aq), (4.22h
Lo, 4.22
A, 2 iz V(@) (4.229
! _1+ ! U 4,22
B, 2 2z,/z;+1 (7ay), (4.229
! _1+ ! U 4.22
B, 2 z,/z3+1 (78z), (4.229
and
[La|=1a|=]15]=14]=1 (4.229

To derive Eq(4.223, Eq.(4.20 for n=1 andi =| has been

compared with the electroneutrality conditian,e;p;=0.
This comparison results in
1u 1 ., i€
2_>
i
Zl

where({; are unknown coefficients. The relation expressed by
Eqg. (4.23 is the reason why the coefficients have been
contained in Eq(4.223.

In addition, an equation similar to E¢4.23 can be de-
rived from Eq.(4.20 for n=2 andi#] as

Z

.
~ DL+ D2
z, 2
~+1

Z;

§|’ ej

i'j

(i’=1 for i=2, i'=2 for i=1). (4.24
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If D7 expressed by Eq4.213 are considered, the substitu- Where

tion of l5i2j into Eq. (4.24) leads to four equations for deter-

mining the relation betweefi’ and 7. The relation is{;/{;
=T.

The substitution of Eq4.23 into Eq.(4.20 for n=1 and
i # | yields

€k
— 27K} = 2 ka,k D (4.253

jk

(i#]).

By consideringK}; =Kj , the ratio of Eq.(4.253 for i=1

andj=2 to Eq.(4.259 for i=2 andj =1 results in
D%lb%Z b
) (4.25bh
BlpL, &

The substitution of Eq(4.24) into Eq. (4.20 for n=2 and
i=] results in

2

, & ek
_ZWKn—Z Pk |k P
’k
(i'=1 for i=2j'=2 for i=1). (4.26a

The ratio of Eq.(4.263 for i=1 to Eg. (4.26a for i=2
results in

N2 N2
D11D12
N2 N2
D21D22

1 K
Kzz

(4.26b

where the relation}/¢,= 7 is considered. D% expressed
by Eq. (4.219 are substituted into Eq4.26b, then a for-
mula is obtained by considering the ratip/ {, given by Eq.

(4.25H as
2
a(g) -

where the relatiork3,/K3,= (e, /e,)? has been considered.
The ratioK2,/K3, can be estimated using E(R.186.

If D}, expressed by Eq4.223 is considered, the substi-
tution of D1, into Eq. (4.25b leads to

£
Clsls &
[a]
I

From this equation, two relations can be extracted as

4}
Isly &
51
&

(2—a;)(2—ap)
(2 Tal)(z Taz) §21

(4.27

Ble

2

l|2

=1, (4.283

Il

and

A]_Az:Ble, (428b

AA,<0, B;B,<0. (4.280
According to Eq.(4.22a, the following relations must be

satisfied:

LAe;>0,  [1A,6,>0, (4.280
{,Bie1>0, ¢,Bre,>0, (4.28¢

where
e,6,<0. (4.28f)

By considering Eq(4.281), Eqgs.(4.289 and(4.28¢ lead to
the relation given by Eq4.280.

After Eq.(4.23 is substituted into Eq4.20 forn=1 and
i#]j, if Egs.(3.18b, (4.27), and(4.28h are considered with

IVDﬁ expressed by Ed4.223, a formula for estimating, can
be obtained as

[ o L2 aé)” o @) u)
2 18¢|1 o1/ € e,

( (2—a;)(2—ay) Al)”
“| "2=7ap(2—ray) B,

T

where

(2—a;)(2—-ay) By
(2 ’Tal)(z Taz) Al

1/21-1
) } , for a=oq,

(4.293

a’?pl. (4.29bh

¢

Il
e

2. A formula for estimating q, a,, and =
If I5i2]- expressed by Eq4.213 are considered, products
DiD/, estimated by substitutin@ﬁ into Eq. (4.24 can ob-
tain the ratioD},D1,/Di,D1, as
D103
D201

:E (2—T1a;)(2—aj)a,
€ (2—T1ay)(2—ay)a;

If Dﬁ expressed by Eq(4.223 is substituted into the
above, a formula including only three coefficients (a,, 7)
can be obtained as

|1|3 a2(2_a1)[2_(l_4RR,)Tal]

- —= , (4.309
l2ls & (2—ra,)[2—(1-4RR)a,]
where
Z
7
R= , (4.30bh
Z
=+1
Z
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1
R'=

2
7 (4.300 kZl [ S+ (pip) P ik (K) 1L 8= (pipj) ¥2Cii(K) ]
241 -

Z;

ijs for |k|:k1 (54)

By modifying Eq. (4.289 with the substitutions of Egs.
(4.22h—(4.22¢, a formula can be obtained as where
(2—a))[2—(1-4RR')7a,]
(2—71a)[2—(1—-4RR)a,]
(2= 73,)[2-(1-4RR)a,]
 (2—-a,)[2-(1-4RR)1a,]’

T:')”(k)Ef Pij(r)eik~rdl’, hclll(k)EJ’ Cij(r)eik-rdr.

The relation betwee®;; (k) andQ;.(k) is given as

To derive Eq.(4.303, this relation has been used with Egs. Jij _(Pipi)méij(k):kgl Qik(K)Qj(—k),

(4.22h—(4.228. Moreover, the relatiofl | =1 is required for

|A,/Bq|=1A,/B; in order to obtain Eq(4.303. If the rela-

tions given by Eqs(4.283—(4.28f are considered, the rela-

tion I(I415/1,1,)=1 can be found. 2
Thus, the three coefficients , a,, andr are restricted by ” ANUZD ) — 51 11

Eq. (4.28D, so that if the restriction is considered in Eq. O +(pipy) Py (K) kgl Qui (~k)Qy (k). (59

(4.309, a formula for estimating the three coefficients

(a;,a,,7) can be obtained as Thus, Eq.(5.5) results in

so that Eq.(5.4) results in

a2(2_ Tal)[Z—(l—4RR')a1]

2
2 0)Qy;'(0) =4 +(p.p,)1’2f Pij(r)dr. (5.6)

+a,(2—a,)[2-(1-4RR)7a,]=0. (4.31) k=

Equation(4.31) does not include factors concerning tempera-Ultimately, the substitution of E5.6) into Eq. (5.3 results

ture, density, and charge. This is a remarkable fact, slﬁfpe

and I5i2~ are composed of;, a,, and r as shown by Eqgs.

2
(4.213—(4.229). S— E

2 2 —1/2 2
E (E —k) éﬁm} . (579

1 Pj

V. MEAN SIZE OF PHYSICAL CLUSTERS L =1 Lo
Therefore, percolation is generateddf; *(0) reaches infin-
A. Cluster size for a finite value of k™! ity.

The equilibrium numben of physical clusters consisting ~ According to the comparison between Edg.3) and
of s particles can be related to the pair connectedigss (4.8, the relation betwee®;;(0) andQ;;(0) is given as
according to the formula given by Coniglio, DeAngelis, and

Foriani[11], as . Qij(0)= &~ (pip)) 2Q;;(0). (5.7
225 s—1)ns= 2 21 Pipj fvapij(ri ry)dridrj. If Eq. (5.7 is used,Q;;*(0) is expressed as
(5.

If the probability p(i) that particlei exists in a cluster is
independent of, then X sn included in Eq.(5.1) can be
related to the density; of thei particles in the volumé&/ as

Q1'(0) 6;21<0>) _
~_ ~ =[z,defQ;;(0)[17*
(sz(m Q27(0) '
X( 1_102@22(0) VP1P2Q12(0)
VP2P1©21(0) 1_P1©11(0)
(5.70

1
pi=y P2 sns. (5.2
S
Since the mean physical cluster si&is given by S

=(2.5°ng)/ (5N, the substitution of Eqg5.1) and(5.2)
into this formula results in

2 2 2
> Pk) > > PinJ Pij(r)dr. (5.3
k=1 i=1j=1

On the other hand, the Fourier transform of E2.4) is R
given as If Eq. (4.8) is used,Q;;(0) can be derived as

where

deqéij (0)]=1-p1Q11(0) = p2Q2A0) + p1p2Q11(0) Q24 0)
~p1P2Q120)Q21(0). (5.7d

S=1+
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2 2
n o 1 2TPy ~ o
Q0= {e @D = +oi|+ 3 TPy (2D
m=1 ) Zn k=1 m !
e~z 1
X —e | =+, (5.9
Zm Zm

B. Percolation threshold for || <1
1. Restriction for values of @, a,, and 7

Furthermore, if|z,|<1 for |x|<1 is consideredQ;;(0)
given by Eq.(5.8) can be approximated as

2 2
Q'l(o) UIE q|]+2 _D|n]1a (SQa
where
2
gif=Dij+ nggl PkPik(Zm) Dyj - (5.9b

Although the behavior o@ij(O) for | k| <1 is represented

by Eqg.(5.9a, the divergence of dg;;(0)| for |«|<1 can

be avoided. The restriction required for avoiding this diver-

gence can be found using Eq5.70 and(5.99 as

=0. (5.10

If Eq. (4.218 and EQgs.(4.223—(4.22¢ are substituted
into Eq. (5.10, the formula for estimating the three coeffi-

cients @;,a,,7) can be obtained as
(2—ay)[2—(1—-2R")7a,][2—

X[2—(1—2R")a,]+(2—ra,)[2—(1—2R")a,]
X[2—(1-4RR)a,][2—(1-2R’)7a,]=0.

(1-4RR')7a,]

(5.11

To obtain Eq.(5.11), the relationl’(1113/1514)=—1 is re-
quired. Here|’ is defined agA,/B,|=1"A,/B;. If the re-
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2

aneqéij(o)|_ 2

Zn
(P1D11 +P2D222 )

m’

O‘1q11 D22

+p1p2 2 E

m=1 m =1 m’
Zn . . Zn o
m m m
+ Z_D 102055 — 01q7,—D5)
m

m’

CZnem A
2 —Do207 |- (5.12

m

If zndeﬂéij(0)| reaches zero under a certain condition, then,
651(0) diverges to infinity. This means that the mean physi-
cal cluster sizeS given by Eq.(5.79 diverges to infinity.
Therefore, the percolation threshold should be estimated as
particular states at Whict}]detléij(oﬂ =0 is satisfied. Thus,

a requirement for the percolation threshold can be obtained
from Eq.(5.12 as

p1D I+ PzDzz+ (PlD 21+ p2D3%)

2 2
, -
_plpszl kzl [0161k+ mo1pP1k(Zm) ]

.. Zi. . .. Zio .
1 1 2 1 1 2
X| DDyt Z_DE1D22_ DizD21— Z_D212D21)
2 2
2 2
-
_plpszl kzl [0262t ToopKPok(Zm) ]

DD}l+DD§1DD DD)O

(5.13

Here, Eq.(5.9b defindinga{}‘ is considered to derived Eq.
(5.13.
VI. SPECIFIC IONIC FLUIDS

A. Fluid composed of point charges and sized particles
1. Formulas for evaluating the percolation threshold

Percolation in an ionic fluid composed of point charges

lation given by Eqs(4.289—(4.28f is considered, the rela- and sized particles can be estimated somewhat simply. To

tion 1'(l413/1,1,)=—1 can be found. Equatios.1]) is
used with Eq.(4.3)) for estimatinga;, a,, andr.

evaluate the percolation threshold, the coefficients expressed
as Pyi(z;), Piz;), and P,y(z;) in Eq. (4.16 must be

Equation(5.11) does not include factors concerning tem- evaluated. In an ionic fluid, the evaluation of these coeffi-

perature, density, and charge. This is similar to EQ31)

and is a remarkable fact. In additioB;; andD} are com-

posed ofa;, a,, andr as given by Eqs(4.21) and(4.22.

2. Percolation threshold

If the relations given by Eq(5.70 and Eq.(5.10 are

considered, the factczndellQ,J(O)l found in Eq.(5.79 can
be approximated fojx|<1 as

cients can be somewhat simplified.
By consideringo;#0 ando,=0 for the ionic fluid, Eq.

(4.16) for i=1 andj=1 results in a formula including;;
andP,, as

11 b . A S(¢. \"1 S
%\/——(ﬁ——(gipu +S a_ipll +m(U—%Pn t5
(6.139
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where
S= &2 L(al) D_%l (6.1b
e; 1+U(ray) B’ '
and

. 36e /gz
TE__[1+U(Ta1)]I3 161(]5 (61(‘)
l

In the above, the expression given by KE4.17) is consid-
ered. To obtain the expression in E§.13, I5i2j expressed
by Eqg. (4.213 and f)ﬁ expressed by Eq4.223 have been
used with the electroneutrality conditi@ap,+e,p,=0 and
the volume fractionp defined by Eq(4.29b. In addition, ¢
should be of a positive value, so tHatin Eq. (6.1¢9 can be
determined.

For an ionic fluid, the difference between Eg.16) for
i=1 andj=2, and Eq.(4.16 for i=2 andj=1 can be
simplified by consideringr;#0, 0,=0, andP;,— P»=0
for |k|<1. As a result, the difference is written as

1 = 1 =~ 1 1 ~ 1 =~ 1 = 1
E(DIZ_D21)+ E[U(az)Dlz_U(Tal)Dzj_]_Z’ﬂplO'lDll

X[1+U(ay)1P1,—2m°p1p,01D3 1+ U(7ay)]
X P1oP 1o+ {2mp10i D1 1+ U(p) ]+ 27%p1 0
x{p,D3f1+U(7a,)]—p:D7
X[1+U(ay)}P13P1i+272pTaiDy,

X[1+U(ay)]P1,P11=0. (6.2

To obtain the expression in E¢G.2), Dizj expressed by Eq.

(4.213 has been used. If the volume fractignand the elec-
troneutrality conditione;p,+e,p,=
(6.2) results in

L, 1+U(ra;) D3, % 1 ¢ﬁ)
144{ 7 1+U(ap) DL, lof ) 6lof ™
N RV 1) ¢,
+Ul =P || 5P| + V| P
g1 01 g1

e, 1+U(ra;) D . \2
—e—;ﬁm:))[)—”(%%) =0, (6.33
where
g€ 1tu(ray e_gz 1+U(ay) e_il 6.3
e; 1+U(ay) D}, 1+U(ay) pL)’
and
e 1+U(ay) D1, 6.30

1+U(a) B,
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0 are considered, Eq.
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Equations(G 19 and(6.33 are used to evaluate the values of
P11 and Plz In Egs.(6.1a and(6.3a, the coefficientsS, T,

U, and V are independent of temperature, density, and
charge, if|e;| equals|e,|.

In addition, the relation expressed by E6.33 should be
satisfied, even when the value ¢fis sufficiently small. This
requires that the first term on the left-hand side of €&q33
is zero. This fact leads to the restriction for the coefficients
(ay,a5,7) as

2—(1—2R)az—[2—(1—2R)ral]:—3
1

y % (2—7ay)[2—(1-4RR)a,]
el T(Z_al)[z_(l_4RR’)Ta1]

=0, (6.4)

where If)ilj expressed by Eq4.223 has been used in the
derivation. Equatiort6.4) is used with Eqs(4.31) and(5.11)
for estimatinga,, a,, andr.

Equation(6.4) does not include factors concerning tem-
perature and density. Basically, such a feature of(Ed) is
similar to that of Eq(4.31) and(5.11), except for the charge.
Equation(6.4) with Egs.(4.31) and(5.11) indicates thag,,

a,, and 7 are independent of temperature density, and
charge, if|e;| equals|e,|. The ratiosD} /Dkl can also be
independent of temperature, den5|ty, and chargelejf
equals|e,|. According to Eq.(4.223, the ratios are com-
posed of coefficienta,, a,, andr.

2. The relation between B and P, at the percolation threshold

The relation betweerP;; and P, at the percolation
threshold can be derived from the substitutionlv]ﬁ ex-

pressed by Eq4.219 andDj; expressed by E¢4.223 into
Eqg. (5.13. Thus, the obtained relation is

W = — % sx(%ﬁ»ﬂ) —6?(%%) . (653
ag g

JE 1 1
where
- _7T ey 1 §2 12 Zq
—gan( ﬁBzez(ﬁ) 1+ —2U(a1)
1+ —U(7a
e 2 (7az) Iy [{2B2es
s z I, VAl
2 1+—1U( 1) 1 1M\1%1
Z
(6.5b
. z
X=[1+U(ap]| 1+ -U(ray) [+[1+U(ay)]
2
|14 2y By 6.5
2 (ray) A, (6.50

and
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FIG. 2. Correlations between 1-1 particles and between 1-2 par-
ticles in an ionic fluid satisfying the conditions, # 0, ¢,=0, and

FIG. 1. Percolation thresholds for ionic fluids satisfying the con-4Be?/e=8.79x 10"’ cm. For the evaluations, ratios concerning

ditions o,=0 and 4rBe? e=8.79x10 7 cm. Each curve repre-
sents a percolation threshold. Percolation takes place under the cof/|, = — 1 andl,/I,=1. In addition, ¢"/o2)PP
dition specified by the point belonging to the upper region of eachggq

curve. The dot-dash line representg=1x10"% cm ande,/e
=1, the solid linec;=5X 1077 cm ande,/e=1, the dashed line
0,=5%X10"7 cm ande,/e=2, and the dot-dot-dash line;=5
X 10~7 cm ande,/e= 3. For the evaluations, ratios concerning
l,, 13, andl, are determined ak)l3/141,=1, I,/1;=—1, 153/14
=—1, andl,/l;=1. In addition,¢ is dimensionless.

S -t Z4 I, [Ase,
Y= e—z(l 2—2)[U(Ta1) U(Taz)]i Alel.

To obtain the expression in E¢6.59, e;p;+€,p,=0, o
#0, ando,=0 have been considered, wighdefined by Eq.
(4.29b. The coefficientX andY in Eq. (6.5a are indepen-
dent of temperature, density, and chargeeif equals|e,|.
In addition, ¢ should be of a positive value, so tHatin Eq.
(6.5b can be determined.

The values of §/a2)Py; and (¢/o2) Py, at the percola-
tion threshold are evaluated using E@6.19, (6.39, and

(6.58. These equations indicate that the factow(ﬁ)lsll

(6.50

4, 15, 13, andl, are determined a&,l3/141,=1, 1,/1,=—-1,

;j is dimension-

tween the closure expression and the percolation threshold
should be considered, although it has already been briefly
discussed in Sec. Il D 2.

The decay of closure expressed by 81143 depends on
r~32. If the closure is expressed by the form of £§.183,
then the decay of closure dependsrorto; Y2exp (—3xr),
which can be determined using the maximum diameteof
the distributed particles. The decay of closure expressed by
Eq. (3.15 depends o %2 If the closure is expressed by
the form of Eq.(3.183, the decay of closure then depends on
r o, ¥2exp(—3«r). Equation(3.183 is a simplified closure
scheme for solving the integral equation analytically.

Equation(3.18a provides an overestimation of the long-
range contribution of the closure, &f is regarded as zero. If
K is not zero, it is possible that E¢3.183 for |«x|<1 pro-
vides an overestimation of the decay of closure. The effect of
the former can result in an overestimationegfand ¢ at the
percolation threshold. Evaluation under the condition related
to the latter can underestimagg and ¢ at the percolation
threshold. These are considered on the basis of a previous

and (qﬁ/af)lslz at the percolation threshold are independentstudy of Yukawa fluidg12].

of o4 and ¢.

3. Evaluation of the percolation threshold
Using Eq.(6.59 with Egs.(6.19 and(6.33, the values of

&, P1;, andP, at the percolation threshold are determined.

Equation(4.16 containing the coefficientg, is an ap-
proximation derived by use of Eq3.183 for both |«|<1
and xk# 0. Equation(4.20 also is an approximation derived
from Eq. (3.18a for both|x|<1 andx#0. Therefore, Eq.
(4.20 contains the coefficients,. All the formulas derived
from Egs.(4.16) and(4.20 do not depend on the magnitude

The percolation thresholds shown in Fig. 1 are evaluateg)f «, although Eqs(4.16 and(4.20 contain the coefficients

using these equations. The coefficieats, a,, and 7 are
evaluated using Eq6.4) with Egs.(4.31) and (5.1).

The curves shown in Fig. 1 demonstrate that percolatio

is generated at a smaller value ¢fif the value of|e,| is

n

z, . For the estimate of percolation, the magnitude @ not
required, if the conditionk|<1 is satisfied. This is an ad-
vantage for simplifying the estimation.

In contrast, the degree of overestimation for the decay of

larger. On the contrary, percolation is generated at a Iarg%losure cannot be determined, when the magnitude &

value of ¢ if the electric field on the surface of the particle
corresponding to=1 is weaker. Such phenomena mean tha
developed dense regions can be formed in an ionic flui

unknown. It is not clear whether the percolation thresholds
xpressed in Fig. 1 can provide a quantitative estimation.
ortunately, it is expected that the pattern of the curves rep-

containing more highly charged particles, even if the density.canted in Fig. 1 can provide a fair estimate. This is sup-

of the particles is lower. If the ionic fluid is composed of
smaller particles, percolation can be generated at a small
value of ¢, since the electric field on the surface of each

particle is strong.

grorted by a previous studyl 2].

The behavior of §P/02)P?, and (¢P/o2)PY, in Fig. 2 is
evaluated from Eqg6.139, (6.33, and(6.59. Here, the val-

The evaluation of the percolation threshold includes thel€s ofPy, and P, at the percolation threshold are expressed
contribution of the expression for closure. The relation be-asP¥; andPY,, respectively. The expressief is the value
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of ¢ at the percolation threshold. According to Fig. 2,
(¢P1o?)PP, is much larger than¢P/o2) PP, .

The coefficients?,; and P;, found in Egs.(6.1a, (6.3a,
and(6.53 are quantities corresponding to the integral given
in Eq. (4.6b. Hence, the magnitude (ffll depends on the
probability that particles correspoding te=1 belong to a

cluster. The magnitude (ﬁflz depends on the probability that
a particle correspoding tc=1 and a particle correspoding to
i =2 belong to a cluster.

Thus, it is possible that the magnitude @f, is large, if
the probability is high that a particle corresponding#ol is
located near another particle corresponding #al. Simi-
larly, it is possible that the magnitude B, is large, if the
probability is high that a particle correspondingite 2 is
located near a particle corresponding tol.

These interpretations foP,; and P;, can result in an
additional interpretation based on the relatimip,(af)ﬁﬁ’l
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This result is reasonable. It is considered that the pair
potential u;5(r) can diverge toward-c for T=0, since
point charges in a classical fluid can be extremely close to
each other. On the other hand, the relative kinetic enErgy
cannot exceedu,(r)| for a finite temperature. Thus, it is
inferred that the conditiol,,<|u,,(r)| is always satisfied.

For |e,|#|e,|, the percolation threshold depends on
e;/e,. This fact is unreasonable, since the percolation
threshold is independent of temperature and density. It is
considered that a defective result can be avoided if an im-
proved expression for closure can be obtained and the inte-
gral equation can be solved with the use of it.

VII. FRACTAL STRUCTURE

In an ionic fluid, dense regions are generated, while the
distribution of particles becomes nonuniform. Each dense re-
gion can be regarded as an ensemble of particles bound to
each other by an attractive force. The dominant portion of

<(¢Plo?)PP, expressed by Fig. 2. Namely, a pair of 1-2 particles distributed in a dense region can be particles con-
particles(a positive-negative particle paican be regarded as stituting pairs linked by the attractive force. Particles consti-
a unit, which constitutes a dense area in the ionic fluid. Actuting each pair should then satisfy the conditic;
cording to this interpretation, it is inferred that the thermo-+ u;;(r)<0.

dynamics based on the Bjerrum theory can provide a satis- A cluster ofi particles characterized by;;(r) is an en-
factory description. semble ofi particles bound to each other \jigarticles sat-

As found in Fig. 1, an increase |g;| results in a decrease isfying the conditionu;;(r)<0. Each pair in the ensemble
in ¢P. Either (¢P/a2) PP, or (¢P/o2) PP, continue to be suf- then satisfies the conditio;; +u;;(r)<0. It is expected
ficiently constant for an increase jg,|. Hence, Fig. 2 indi- that the structure of the cluster describedRy(r) can pro-

. . . . - vide a feature of the dense region structure. The pair con-
cates that the increase [iey| results in increases in bof;

N . . . ) nectedness;;(r) can be estimated using Eq&.6) and
andPY,. An increase irje,| also results in a decreased® (3 15,
as shown in Fig. 1, even whee, | has a constant value. For  For a two component mixture, EB.6) is rewritten as
an increase inje,|, both PY; and P!, increase also. The be-

havior of PP, and PP, reveals that the generation of a non-
uniform distribution of particles can be enhanced by an in-
crease in the charge on each particle.

BUii(r)Pii(r)==Cii (r). (7.9
If Eq. (3.15 for r>1 is substituted into Eq(7.1), then
Pii(r) for r>1 is estimated as

B. The percolation in a fluid consisting of point charges

(=Buj(r)¥? (i#j). (7.2

22 ep;

S L
When an ionic fluid system is composed of only point Pii(r)= 157 €ipi

chargesg;=0 ando,=0, so that Eq(5.13 for estimating

the percolation threshold results in an equation expressed as According to Eq.(7.2), the average distribution dfpar-

ticles in a cluster decays as
0=py l1vVE1A€e

a=1.5.

7
_1+ zzu(al) Pi(r)~r—¢, (7.3
This means that the cluster has a fractal structure with the
fractal dimension 1.5€3—«a).

Thus, it is expected that the dense region formed in an
ionic fluid has a fractal structure. In fact, a fractal structure
with the fractal dimension 1.9 was found for a nonuniform
colloidal suspensioril10]. It is considered that the fractal
dimension found in the present work is close to that for the

nonuniform colloidal suspension.

Z3
1+ —U(7a
z, ( 2)|4 {-Boe;

€1
1 V{1A€q

e (6.6)

Z;
1+ —U(ay)
Z

To obtain Eq.(6.6), Egs.(4.219 and(4.223 are considered
with the conditione;p;+e,p,=0. The percolation thresh-

old in the fluid can be evaluated using E.6) with Egs.
(6.1a and(6.33.

Equation(6.6) does not have the factors concerning tem-
perature, density, and chargdéf,| equalge,|, sincep, and
V{1A1e, can be eliminated from Ed6.6). The percolation
threshold for|e,|=|e,| is then independent of temperature,
density, and charge.

According to Eq(7.2), the dependence &;;(r) onr can
be independent of the sign of the charge. Therefore, the de-
cay of the positive charge distribution in a cluster depends on
r~%2 and the decay of the negative charge distribution in the
cluster also depends @n 2 Thus, each decay in the cluster
has the same dependence romMs a result, a large cluster
having a fractal structure can be generated in the ionic fluid.
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VIll. CONCLUSIONS tion of the long-range contribution of closure, if is re-

The nonuniform distribution of particles in an ionic fluid gardgd as zero. [k+0 |s_sat|sf|ed even fOtKKl’. It is
. . . possible that the expression results in an overestimation of

can be developed by increasing the charge on each particlg, )
e decay of closure. The effect of the former can result in an

A bound state £+ u;(r)<0" between positive-negative . . o iimation ofe, and ¢ at the percolation threshold
particles can significantly contribute to the formation of Evaluation under trl1e condition related to the latter can lJn-
dense regions in the ionic fluid. . .
S , 25D derestimates; and ¢ at the percolation threshold.

This is supported by the relation @0/ o1) Py For percolation estimates in the present work, the magni-
<(¢Plol)PP, given at the percolation threshold. tude of k is not required, ifk|<1 is satisfied. This is an

From this relation, it can be interpreted that the probabil-advantage for simplifying the estimate.
ity that 1-2 particles approach each other is much higher than In contrast, the degree of overestimation for the decay of
the probability that 1-1 particles approach each other, even alosure cannot be estimated, when the magnitude o$
the percolation threshold. According to this fact, a configu-unknown. For this reason, it is not clear whether the perco-
ration of charged particles can agree with that of the Bjerrumation threshold given in the present work can be quantita-
theory. tively estimated. It is expected, however, that the pattern of

Each dense region formed in the ionic fluid has a fractathe curves representing the percolation threshold can provide
structure with the fractal dimension 1.5. This fractal dimen-a valid estimate.
sion is close to the known fractal dimension 1.75) for the
fractal structure resulting from cluster-cluster aggregation. ACKNOWLEDGMENT
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